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Abstract

In this thesis, we mainly study the finite-time behavior of anomalous fluctuations in heavy-
tailed renewal-reward processes. A heavy-tailed distribution produce more extream events
(rare events) than an exponential distribution in a system. In general, the tail of probability
distributions is related to a rare event and has a small impact on the entire system. However,
when probability distributions are heavy-tailed, this insight does not work. For instance,
in the financial market, the melt-up or shock of the market is a rare event following a
heavy-tailed distribution. In infectious disease spreading, a super spreader is a rare event
in the system, whose occurrence is also distributed by a heavy-tailed distribution. This
random phenomenon can be explained using a heavy-tailed renewal-reward process and by
constructing the model, we can estimate the fluctuations of the interested stochastic process.
In addition, the behavior of the stochastic process contains anomalous fluctuations because
of memory effects. In this thesis, we study the anomalous behavior of heavy-tailed renewal
reward processes using the large deviation principle (LDP), variational principle, and a
renewal equation.

In this thesis, we first introduce the background of our research in chapter 2. Our main
results are described in chapter 3, chapter 4, and chapter 5.

In chapter 3, we give proof for the large-time asymptotics of a moment generating function
(or cumulant generating function) in a heavy-tailed renewal-reward process. The moment
generating function has the singularity within the specific range of biasing field. We have
clarified the behavior of the singularity part in a finite-time range. In addition, we have
analyzed a finite time rate function using numerical simulation. For the results, The finite
time behavior of probability is no longer an exponential function within a flat part. This
is because a heavy-tailed waiting time distribution produce a lot of moving slow particles
and convergence law is different from using exponential distribution. Occurring a lot of rare
events affects the convergence law of LDF and the finite-time moment generating function
behaves as a power-law within a flat part.

In chapter 4, we re-derive an affine part in cumulant generating functions (CGFs) by
using a variational principle developed in large deviation theory. This variational principle
has been applied to study a singularity appearing in the LDF in, among others, kinetically
constrained models (KCM) and active matters. These models are defined using Markov pro-
cesses, because of which the LDF of time-averaged quantities does not have any singularity
whenever the system size (not the averaging time) is finite. Our focus is on how the same
methodology can be extended to our non-Markovian problem to derive the affine part.

In chapter 5, first, we studied a counting process with two heavy-tailed waiting time
distributions: the Pareto distribution and the inverse Rayleigh distribution. These two



waiting time distributions have an asymptotic form exponent of the power-law is -3 when the
waiting time is large, implying that the variance of the waiting time diverges. Because of this
divergence, we discussed that the scaled variance of the counting process also diverges in the
large time limit. We indeed derived that the scaled variance is asymptotically proportional
with log(t), diverging as time goes to infinity. Second, as with the conclusion of a counting
process, we have clarified the asymptotic behavior of the variance of the time-averaged
current. That inter-arrival time follows the inverse Rayleigh distribution, so we can obtain
the scaled variance is asymptotically proportional with log(t), diverging as time goes to
infinity. The memory effect of a stochastic process is related to the anomalous divergence of
moments.

Keywords Large deviation theory, Renewal-reward process (continuous-time random walk),
Heavy-tailed waiting time distribution, Dynamical phase transition, Knudsen gas model,
Variational principle for LDF, Anomalous scaling of cumulants



Résumé

Dans cette thèse, nous étudions principalement le comportement en temps fini des fluctu-
ations anormales dans les processus de renouvellement-récompense à queue lourde. Une
distribution à queue lourde produit plus d’événements extrêmes (événements rares) qu’une
distribution exponentielle dans un système. En général, la queue des distributions de prob-
abilité est liée à un événement rare et a un faible impact sur l’ensemble du système. Cepen-
dant, lorsque les distributions de probabilité ont une queue lourde, cette idée ne fonctionne
pas. Par exemple, sur le marché financier, l’effondrement ou le choc du marché est un
événement rare suivant une distribution à queue lourde. Dans la propagation des maladies
infectieuses, un super propagateur est un événement rare dans le système, dont l’occurrence
est également distribuée selon distribution à queue lourde. Ce phénomène aléatoire peut être
expliqué à l’aide d’un processus de renouvellement-récompense à queue lourde. En constru-
isant le modèle, nous pouvons estimer les fluctuations du processus stochastique concerné.
De plus, le comportement du processus stochastique contient des fluctuations anormales à
cause des effets de mémoire. Dans cette thèse, nous étudions le comportement anormal
des processus de récompense de renouvellement à queue lourde en utilisant le principe des
grandes déviations (LDP), le principe variationnel et une équation de renouvellement.

Dans cette thèse, nous introduisons d’abord le contexte de notre recherche dans le chapitre
2. Nos principaux résultats sont décrits dans le chapitre 3, le chapitre 4 et le chapitre 5.

Dans le chapitre 3, nous donnons la preuve de l’asymptotique en grand temps d’une fonc-
tion génératrice de moment (ou fonction génératrice des cumulants) dans un processus de
renouvellement-récompense à queue lourde. La fonction génératrice des moments présente
une singularité dans une plage spécifique du champ de biais. Nous avons clarifié le com-
portement de la partie singulière dans une plage de temps finie. De plus, nous avons analysé
une fonction de taux en temps fini en utilisant la simulation numérique. Le comportement
en temps fini de la probabilité n’est plus une fonction exponentielle dans une partie plate.
Cela est dû au fait qu’une distribution du temps d’attente à queue lourde produit un grand
nombre de particules lentes en mouvement et que la loi de convergence est différente de
celle de la distribution exponentielle. L’apparition d’un grand nombre d’événements rares
affecte la loi de convergence de la LDF et la fonction génératrice de moments en temps fini
se comporte comme une loi de puissance dans une partie plate.

Dans le chapitre 4, nous redérivons une partie affine dans les fonctions génératrices cu-
mulantes (CGF) en utilisant un principe variationnel développé dans la théorie des grandes
déviations. Ce principe variationnel a été appliqué pour étudier une singularité apparaissant
dans la CGF dans, entre autres, les modèles à contrainte cinétique (KCM) et les matières
actives. Ces modèles sont définis à l’aide de processus de Markov, ce qui fait que la LDF



des quantités moyennées dans le temps ne présente aucune singularité lorsque la taille du
système (et non le temps de moyennage) est finie. Nous nous concentrons sur la façon dont
la même méthodologie peut être étendue à notre problème non-markovien pour dériver la
partie affine.

Dans le chapitre 5, nous avons d’abord étudié un processus de comptage avec deux dis-
tributions de temps d’attente à queue lourde : la distribution de Pareto et la distribution
inverse de Rayleigh. Ces deux distributions de temps d’attente ont une forme asymptotique
: l’exposant de la loi de puissance est -3 lorsque le temps d’attente est grand, ce qui implique
que la variance du temps d’attente diverge. En raison de cette divergence, nous avons dis-
cuté que la variance échelonnée du processus de comptage diverge également dans la grande
limite de temps. Nous avons en effet dérivé que la variance échelonnée est asymptotique-
ment proportionnelle à log(t), divergeant lorsque le temps va vers l’infini. Deuxièmement,
comme pour la conclusion d’un processus de comptage, nous avons clarifié le comportement
asymptotique de la variance du courant moyenné dans le temps. Ce temps inter-arrivée suit
la distribution inverse de Rayleigh, nous pouvons donc obtenir que la variance échelonnée
est asymptotiquement proportionnelle à log(t), divergeant lorsque le temps passe à l’infini.
L’effet mémoire d’un processus stochastique est lié à la divergence anormale des moments.

Mots-clés Théorie des grandes déviations, Processus de renouvellement-récompense (marche
aléatoire à temps continu), Distribution du temps d’attente à queue lourde, Transition de
phase dynamique, Modèle de gaz de Knudsen, Principe variationnel pour la LDF, Échelonnement
anormal des cumulants.
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Chapter 1

Introduction

“The most important questions of life are indeed, for the most part, really only problems of
probability.” As written by Pierre-Simon Laplace(1749-1827) in his celebrated book “Théorie
analytique des probabilités” [1], probabilistic phenomena are everywhere and understanding
them in terms of mathematics is important. For example, how many times do we have to
change the light bulb in a room in 10 years? Each light bulb has different lifetimes and they
are distributed randomly according to, for example, the gamma distribution. Knowing this
distribution, one can estimate not only how many light bulbs are needed on average during 10
years, but also the range of the number of required light bulbs in 95% probability. Following
the same approach, probability theory has been applied to the managements of factory and of
company’s office to evaluate the maintenance cost. Probability theory has been used as a tool
to understand physical and social phenomena for many centuries, and has had a great impact
on the advance of technology. In theoretical physics, Ludwig Eduard Boltzmann(1844-1906)
and Josiah Willard Gibbs(1839-1903) constructed statistical mechanics in the 19th century.
In recent years, the probability theory has been applied to phenomena that attract a lot of
public attention, such as financial markets, climate change and epidemiology.

Let us look back on the history of probability theory. A mainstream opinion is that
it started from the exchange of letters between Blaise Pascal(1623-1662) and Pierre de
Fermat(1607-1665) for discussing dice games [2]. Chevalier de Méré (1607-1684) was a French
nobility and he loved gambling. At some point he lost a lot of money and he asked Pascal
why he lost in the game. Pascal then asked Fermat, who had been already famous at that
moment as a great mathematician, for advice to solve the question. They started exchanging
letters and the research of probability theory has begun. Pierre-Simon Laplace eventually
wrote “Théorie analytique des probabilités”, completing the classical probability theory.
Later, french mathematicians Émile Borel(1871-1956) and Henri Lebesgue(1875-1941) intro-
duced the measure theory. Andrei Kolmogorov(1903-1987) has finally founded the modern
probability theory by using an axiomatic approach.

Many random phenomena around us appear as a sequence. Examples are countless,
such as a share price, temperature in a room, the number of new covid-19 cases, and so
on. The theory of stochastic processes was introduced around 1950 to describe sequences of
random variables [3]. One of the most well-studied stochastic process is a memoryless Markov
process, which assumes that the future in the sequence is independent of the past, given the
present. The majority of random sequences around us however are not Markovian and
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14 CHAPTER 1. INTRODUCTION

contain memory effects. A renewal-reward process is one of the simplest stochastic processes
that can describe these effects. The process is defined by two i.i.d. sequences, where the
first one is the sequence of the state of the system, while the second one is the sequence of
waiting times, after each of which the system changes its state from one to the other. When
the waiting time is distributed exponentially, the corresponding renewal-reward process is
Markovian, known to be equivalent to a continuous-time Markov process, whereas when it is
distributed otherwise, it becomes non-Markovian. More prominent differences from Markov
processes appear when the waiting time is distributed according to a heavy-tailed power law
distribution.

In general, the tail of probability distributions is related to a rare event and has a small
impact for the entire system. However, when probability distributions are heavy-tailed,
this insight does not work. For instance, in the financial market, the melt up or shock of
the market is a rare event following a heavy-tailed distribution [4, 5]. In infectious disease
spreading, a super spreader is a rare event in the system, whose occurrence is also distributed
by a heavy-tailed distribution [6, 7]. A mathematical theory that illustrates the importance
of a rare event of a single power-law distributed variable is the single big jump principle [8].
It proves that the sum of independent and identically distributed random variables extracted
from a heavy-tailed distribution is dominated by their maximum.

To study rare events in a probabilistic set-up, one uses the large deviation principle (LDP),
which studies fluctuations of the arithmetic mean of independent or shortly-correlated ran-
dom variables. For uncorrelated variables, the variance of the empirical mean decreases
proportionally with the inverse of the number of the variables. The LDP focuses on rare
events whose epirical mean largely deviates from its expectation when the number of the
variables is large. Concretely, the principle introduces the large deviation function (LDF)
using the logarithm of the probability distribution of the arithmetic mean. This logarithm
divided by the averaging number (the number of the variables) converges to a certain function
in the large averaging number limit. This limit function, called LDF, provides asymptotic
information about the probability of rare events. The single big jump principle mentioned
above can be stated as follows: the LDF can be calculated from the probability of a single
variable, when each variable follows a heavy-tailed distribution.

In renewal-reward processes with heavy-tailed waiting time distribution, similar phenom-
ena, where an extreme event plays an important role, could be expected. In the article [9],
the authors studied this problem and proved that the LDF of the target variable (the time
average of the state) was indeed dominated by an event with a single waiting time, i.e., by
an event where the state of the system does not change at all. When this happens, the LDF
vanishes in a certain range of the target variable. LDF is not analytic at the two ends of this
zero region. The logarithm of the probability distribution is subproportional to the averaging
time in this range, and is proportional otherwise. These singularities and the zero region
are called an affine part throughout this thesis (See Fig.1.1). Studying how the affine part
develops as the averaging time increases is interesting, but hampered by a lack of general
theory that can be used to study the asymptotics of LDP. For example, strong large devia-
tion principle [10] was proposed to study the asymptotics, but this theory seems not helpful
in our context. Another related work has been done by Tsirelson [11], giving rigorous proofs
for the large time asymptotics of the Legendre transform of LDF (scaled cumulant generat-
ing function) in renewal reward processes for general waiting time distributions. However,
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Fig. 1.1: The rate function with the affine part. In heavy-tailed renewal-reward processes,
the rate function shows an affine part (the flat bottom of the rate function). This figure is
taken from [12].

unfortunately, he used a condition in which the LDF did not have any singularity.

The goal of this thesis is to tackle this problem by focusing on specific examples. We
summarize our results below. In this thesis, we first introduce the background of our research
in chapter 2. Our main results are described in chapter 3, chapter 4 and chapter 5.

Summary of Chapter 3

We consider a counting process Nt defined as

Nt = sup{k : Sk ≤ t},

where Sk = τ1 + . . . + τk and (τj)
k
j=1 is a sequence of the renewal times, independently

distributed according to heavy-tailed distributions p(t). For the heavy-tailed distributions,
we first consider the Pareto distribution p(t) with a parameter m > 2:

p(t) : =

{
0 t ≤ 0
(m−1)
(1+t)m

t > 0
(1.0.1)

The counting process is the number of events that have occurred up to time t > 0. We define
the moment generating function of a counting process as M(t, h) = E[ehNt ]. The main result
of this chapter is then given by the following theorem.

Theorem 3.3.1 Let (Nt)t≥0 the counting process with waiting times distributed according
to a Pareto’s law with an integer parameter m ≥ 3, then for any h < 0 :

lim
t→∞

tm−1M(t, h) =
1

1− eh
. (1.0.2)
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Fig. 1.2: The numerical results of M(t, h)/M0(t) (filled circles) together with 1/(1 − eh)
(dashed lines) for Pareto distribution with m = 3.0 (a), Pareto distribution with m = 3.5
(b), inverse Rayleigh distribution with β = 1 (c) and log-normal waiting-time distribution
with µ = 0 and σ = 1.5 (d). Here, M0(t) = 1 − F (t) and F (t) is a cumulative distribution
function.

We numerically study the moment generating functions of the counting processM(t, h) for
several waiting time distributions: the Pareto distribution, the inverse Rayleigh distribution

pRay(t) : =

{
0 t ≤ 0
β
t3
e−

β

2t2 t > 0
(1.0.3)

with a parameter β and log-normal distribution

plog(t) : =

{
0 t ≤ 0

1√
2πσt

e−
(log(t)−µ)2

2σ2 t > 0
(1.0.4)

with parameters µ and σ. We then plot M(t, h)/M0(t) (where M0(t) = 1 − F (t) with the
cumulative distribution F (t)) in Fig.1.2 together with 1/(1− eh), demonstrating the validity
of Theorem 3.3.1 beyond its assumption.

We also study the asymptotic behavior of log P[Nt < xt] in our numerical simulations and
observe the following general asymptotic form

logP[Nt < xt] ∼ a logM0(t) + log(t) + b (1.0.5)

with constants a, b (that can potentially depend on x) in Fig.1.3. For the Pareto and the
inverse Rayleigh waiting time distributions, a seems to be 1, while a is different from 1 for
the log-normal waiting-time distribution.
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Fig. 1.3: log P[Nt < xt] for several waiting time distributions: (a) Pareto distribution with
m = 3, (b) Pareto distribution with m = 3.5, (c), inverse Rayleigh distribution with β = 1
and (d) the log-normal waiting-time distribution with µ = 0 and σ = 1.5. The blue line
(lower bound) is logM0(t) and a fitting function is a logM0(t) + log(t) + b (with fitting
parameters a, b). These fitting parameters are determined as a = 1.01, b = 0.92 for (a),
a = 1.00, b = 0.43 for (b), a = 1.00, b = 2.00 for (c) and a = 0.89, b = 2.51 for (d).
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Summary of Chapter 4

In this chapter, we re-derive an affine part in cumulant generating functions (CGFs) [12] by
using a variational principle developed in large deviation theory. This variational principle
has been applied to study a singularity appearing in the LDF in, among others, kinetically
constrained models (KCM) [13] and active matters [14]. These models are defined using
Markov processes, because of which the LDF of time-averaged quantities does not have any
singularity whenever the system size (not the averaging time) is finite. Our focus is on how
the same methodology can be extended to our non-Markovian problem to derive the affine
part.

Recalling the set-up of the article [12], we consider the renewal-reward process with the
inverse Rayleigh waiting time distribution. We confine a tracer particle in a one-dimensional
box that has two different temperatures at both ends. The confined tracer has a random
speed v distributed according to the following distribution:

qβ−1,1(v) = β−1,1ve
−β−1,1

v2

2 1l(v)>0 (1.0.6)

where β−1,1 = 1/T−1,1 is the inverse temperature of the left- or right-wall where the collision
takes place. We introduce a sign variable σk that takes a value either 1 or −1 depending on
the direction to which the particle moves between k-th and (k + 1)-th collisions. We denote
the state space of this variable by E ≡ {−1,+1}. The initial position and velocity of the
particle are denoted by (x0,v0), from which we can derive σ0 = v0/|v0|, σk = (−1)kσ0. We
also define the velocity vk of the particle between k-th and (k + 1)-th collisions. These are
drawn randomly from one of the Rayleigh distributions (1.0.6) depending on the previous
hot wall with which the particle collides. We denote by Sk the time at which (k + 1)-th
collision occurs. Introducing σ̂k = 1

2
(σk + 1), the time of the first collision with a wall is

written as

S0 = S0(x0, v0) :=
σ̂0 − x0
v0

> 0. (1.0.7)

Note that k-th inter-arrival time is given as

τk :=
σk
vk
, (1.0.8)

which is distributed as

p(τk|σk−1) =
βσk−1

τ 3
exp

(
−
βσk−1

2τ 2

)
1l(τ)>0. (1.0.9)

The arrival time Sk is then written as

Sk := S0 + τ1 + τ2 + · · ·+ τk, k ≥ 1. (1.0.10)

The energy exchanged between the two walls during a time interval [0, t] is given by

J [0, t] :=
1

2

∑
k≥1:Sk≤t

v2kσk. (1.0.11)
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We next introduce the lower bound for the CGF. For this, we first denote by C a path (or a
trajectory) of the state of the system and by P(C) the probability of C (the path probability).
See Chapter 4 for the detailed expression of the path probability. We then introduce a control
system defined as, for example, the tracer particle model with temperatures different from
the original ones. The path probability of the control system is denoted Pcon. Then, we have
the following bound for the cumulant generating function ϕ(h, t)(= logE[e−hJ ])

ϕ(h, t) ≥ −hEcon[A]−D(Pcon||P), (1.0.12)

where

D(Pcon||P) = Econ

[
log

Pcon(t, C)
P(t, C)

dC
]
, (1.0.13)

is a Kullback-Leibler (KL) divergence.
The affine part can be derived using this bound with a control system where the state of

the system is confined to the initial condition:

Pcon = δNt,0, (1.0.14)

i.e.,

lim
t→∞

ϕ(h, t)

t
≥ 0 (1.0.15)

Furthermore, considering as a control system the tracer particle model with temperatures
βcon
±1 different from the original ones, we obtain

lim
t→∞

ϕ(h, t)

t
≥ −κcon

[
−h− βcon

1 + β1
βcon
1

+
h− βcon

−1 + β−1

βcon
−1

+ log
βcon
1 βcon

−1

β1β−1

]
. (1.0.16)

A hydrodynamic limit (see Chapter 4 in detail) allows us to compute an analytical expression
of the optimal bound under this control system. Interestingly, the right-hand side of this
optimal bound and (1.0.15) are nothing but the analytical expression of CGF obtained in [15],
indicating that these bounds are saturated.

Summary of Chapter 5

In this chapter, we focus on the anomalous fluctuations of the time-averaged quantities in
heavy tailed renewal processes. In particular, we analyze the variance of heavy waiting
time distributions. The variance can tell us directly how much the averaged quantities
fluctuate. We first focus on the fluctuation of a counting process, which is the simplest
model of a renewal-reward process, with heavy-tailed waiting time distributions. Recalling
the definition of a counting process, it is given by

Nt = sup{k : Sk ≤ t}, (1.0.17)

where Sk = τ1 + . . .+ τk. We denote its q-th order moment by mq(t):

mq(t) := E[N q
t ]. (1.0.18)
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To analyse the asymptotics of mq(t), we rely on renewal equations: a powerful tool to
analyse renewal-reward processes. From a straightforward computation, one can establish
the following renewal equation for m1(t) [16]:

m1(t) = F (t) +

∫ t

0

ds m1(t− s)p(s), (1.0.19)

where F is the cumulative waiting time distribution function. From this equation, a simple
expression for the Laplace transform of m(t) is derived. Defining the Laplace transform of a
function f by

f̃(s) :=

∫ ∞

0

e−stf(t)dt, (1.0.20)

we then derive, from the equation (1.0.19),

m̃1(s) =
F̃ (s)

1− sF̃ (s)
, (1.0.21)

where we have used p̃(s) = sF̃ (s).
Similarly, one can also derive a renewal equation for m2(t),

m2(t) =

∫ t

0

E[N2
t−s]p(s)ds

+ 2

∫ t

0

m1(t− s)p(s) ds+ F (t),

(1.0.22)

from which the Laplace transform of m2(t) is obtained as

m̃2(s) = m̃1(s)(1 + 2sm̃1(s)). (1.0.23)

Here, we use the inverse Rayleigh distribution

pβ(τ) =
β

τ 3
exp

(
− β

2τ 2

)
1l(τ > 0), (1.0.24)

and the Pareto distribution

pα(τ) =
α− 1

(1 + τ)α
1l(τ > 0) (1.0.25)

with α = 3, both of which do not have a finite second moment, i.e., E[τ 2] = ∞ to consider
the variance of heavy-tailed waiting time distributions. For the inverse Rayleigh distribution,
we obtain

m1(t)

t
−
√

2

βπ
=

ln(t)

tπ
+ o

(
ln(t)

t

)
(1.0.26)

and the variance c2(t)

c2(t) =
2
√
2√

βπ3/2

ln(t)

t
+ o

(
ln(t)

t

)
(1.0.27)
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for large t, where we define the variance as

c2(t) =
m2(t)−m1(t)

2

t2
. (1.0.28)

As with the calculation of this case, for the Pareto distribution, we obtain

m1(t)

t
− 1 =

ln(t)

t
+ o

(
ln(t)

t

)
. (1.0.29)

and

c2(t) = 2
ln t

t
+ o

(
ln(t)

t

)
. (1.0.30)

We also study the behavior of the fluctuations of the current of energy carried by a
particle, which is introduced in (1.0.11). In particular, we rewrite the current as

Jθ(t) :=
1

2

Nt∑
k=1

v2kσk (1.0.31)

with an initial condition θ = (x0, v0). In addition, we denote by mθ,q(t) the q-th moment of
Jθ(t):

mθ,q(t) = E[Jq
θ (t)]. (1.0.32)

Thus, we can calculate the fluctuations of the current using this formula.
Next, for simplicity, we consider only the following two types of initial conditions:

θ+ = (0, v0) (1.0.33)

with v0 < 0 and
θ− = (1, v0) (1.0.34)

with v0 > 0, i.e., the cases of a particle just before hitting the left wall (temperature β+)
and of a particle just before hitting the right wall (inverse temperature β−). As the particle
immediately hits each wall when the process starts, the value of the initial velocity v0 is
unimportant. We thus denote by + the initial condition θ+ and by − the initial condition
θ−. Then, we can obtain the asymptotic form of the expected value and the variance of
the time averaged current as with the derivation of the fluctuations of the counting process.
Those are given by

m±,1(t)

t
= κ

(
1

β+
− 1

β−

)
+ κ2

(β+ + β−)

2

(
1

β+
− 1

β−

)
ln t

t
+ o

(
ln(t)

t

)
(1.0.35)

Var

(
J±(t)

t

)
= κ3(β+ + β−)

(
1

β+
− 1

β−

)2
ln(t)

t
+ o

(
ln(t)

t

)
. (1.0.36)

for large time.
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Fig. 1.4: (a,b) m1(t)− t/µ obtained from numerical simulations of the counting process Nt

(with 108 samples) are plotted as a function of time in log-scale as orange lines. For the
inverse Rayleigh waiting time distribution (a), β = 1 and µ = 1/

√
2/(βπ), while for the

Pareto waiting time distribution (b), m = 3 and µ = 1. ln(t)/π + const. and ln(t) + const.
are also plotted as blue dashed lines for (a) and (b). (c,d) (m2(t) − m1(t)

2)/t obtained
from the same numerical simulations are plotted as a function of time as orange lines for the
inverse Rayleigh waiting time distribution (c) and for the Pareto waiting time distribution

(d). 2
√
2√

βπ3/2 ln(t) + const. for (c) and 2 ln(t) + const. for (d) are also plotted as blue dashed

lines in the same figures. The agreements between the slopes of orange lines and those of
blue lines in these semi-log graphs demonstrate the validity of (5.2.10), (5.2.13), (5.2.20) and
(5.2.21), as detailed in the main text.
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lines are (κ2/2)(β+ + β−) (1/β+ − 1/β−) (ln t)/t+ const. and κ3(β+ + β−) (1/β+ − 1/β−)

2 +
const. The slopes of the numerical-simulation results in semi-log scale converge to those of
the dashed reference lines, showing the validity of (5.3.17) and (5.3.29).

In summary, first, we have studied a counting process Nt with two heavy-tailed waiting
time distributions: the Pareto distribution with α = 3 and the inverse Rayleigh distribution.
These two waiting time distributions have an asymptotic form 1/τ 3 when the waiting time
τ is large, implying that the variance of the waiting time E[τ 2] diverges. Because of this
divergence, we discussed that the scaled variance of the counting process Nt also diverges in
the large t limit. We indeed derived that the scaled variance is asymptotically proportional
with log(t), diverging as t→ ∞. Second, as with the conclusion of Nt, we have clarified the
asymptotic behavior of the variance of the time-averaged current Jθ(t). That inter-arrival
time follows the inverse Rayleigh distribution, so that we can obtain the scaled variance
is asymptotically proportional with log(t), diverging as t → ∞. The memory effect of a
stochastic process is related to anomalous divergence of moments.





Chapter 2

Background

In this chapter, I introduce some methods and theories, which are related to my research.
In particular, the large deviations theory is the center of my research and it is a powerful
way to analyse the probability of rare events. Our results are based on the large deviations
theory and the theory of renewal-reward processes. Thus, before showing the main results,
we start by considering both theories and introducing the basic tools of our research.

2.1 Renewal Theory

Up to the present, renewal-reward processes have been extensively studied in mathematics,
physics and biology among other fields. In particular, the renewal equation is a useful
approach to various phenomena involving the study of sum of independent random variables.
For instance, in physics, a continuous time random walk (CTRW) can be formulated as a
renewal-reward process and is observed in some physical experiments [17]. A renewal-reward
process can be seen as a stochastic model that is defined as a sequence of pairs made of
a waiting time and a random variable representing a “reward” . In addition, when using
stochastic models with waiting times having a heavy-tailed distribution, it is possible to take
into the account the memory effect in the system. In this context, we will try to consider
the influence of the rare events of phenomena modelled by reewal-reward processes. In the
following subsection, we introduce the definition of a renewal-reward process and the basic
theorems in renewal theory.

2.1.1 Definition

First of all, let us consider a continuous time 1D random walk with arbitrary distributions
of jump lengths and waiting times. Both waiting times (τi), i = 1, 2, ... and jump lengths
(Xi ∈ R), i = 1, 2, ... are i.i.d. whose probability densities are denoted by respectively p
(such that τ > 0 a.s. and Eτ = µ < ∞) and q. The renewal-reward process R(t) is then
defined as

R(t) = X1 + · · ·+Xn, (2.1.1)

where the number of jumps n satisfies

τ1 + · · ·+ τn ≤ t < τ1 + · · ·+ τn+1. (2.1.2)

25
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A simple example of the renewal-reward process is a counting process Nt defined by q(x) =
δ(x − 1), (so that Xi only takes the value 1), i.e. Nt corresponds to the number of jumps
until time t. The mathematical definition of a counting process is given by

Nt =
∞∑
n=1

1(Sn ≤ t), t ∈ [0,∞). (2.1.3)

Here, Sn is a sum of arrival times :

Sn =
n∑

i=1

τi. (2.1.4)

Formally, a renewal-reward process is defined as a sequence of pairs of (Xi,τi)i∈N and a
counting process is of course a simple example of a renewal-reward process. In addition, we
can consider the n-th arrival time that is defined as

Fig. 2.1: The figures of a counting process and renewal-reward process.

Next, let Fn denote the distribution function of Sn, namely,

Fn(t) = P(Sn ≤ t). (2.1.5)

Obviously, we have

E[Sn] = nµ

Var(Sn) = nσ2.

Here, σ2 is the variance of τ1. The expected value of a counting process Nt is called as the
renewal function and the expected value of sum of the rewards R(t) is called the reward
function. Those are given by

m(t) = E[Nt] (2.1.6)

g(t) = E[R(t)]. (2.1.7)

In renewal theory, the renewal function and reward function follows a universal convergence
law called the elementary renewal theorem. If we consider a physical phenomenon modelled
by a renewal-reward process, we can therefore give the asymptotic value of related random
physical quantities. We next list some mathematical models of real-life phenomena described
by a renewal-reward process.
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Example 1 Consider an electric bulb that fails at times τ1, τ2, . . . and is replaced at the
time of failure by a new electric bulb of the same sort. The number of bulbs replaced
by time t is Nt. Knowing the behavior of E[Nt] (renewal function), we can roughly
understand how many the bulbs have to be replaced to replace by time t, when t is
large.

Example 2 Consider driven vehicles with the same constant velocity starting their journey
at successive random times. The vehicles are driving in one direction only. Then we
can count the number of passing cars. The number of cars is a counting process Nt

and they have each inter-arrival times as τi. This renewal-process is applied to the
mathematical model of traffic flow.

Example 3 Let’s consider now an insurance company. Assume that the claims incurred by
an insurance company arrive according to a counting process Nt and the sizes of the
claims are i.i.d. non-negative random variables X1, X2, . . . , with common distribution
F , and that the inflow of premium up to time t is ct. Thus the risk reserve at time t is

Ut = u+ ct−
Nt∑
i=1

Xi, (2.1.8)

where u is the initial value. If Ut = 0, we can consider as the insurance company is
bankrupt. Therefore, we can estimate the probability of bankruptcy of the insurance
company.

The above examples are part of many mathematical models using renewal-reward processes.
We can consider that studying expected value of the sum of the random variables derive some
unique properties of the systems. Therefore, the renewal function or the reward function are
important physical quantities in a renewal-reward process model.

2.1.2 Basic Theory

Here, we study some limit theorems for renewal-reward processes. First of all, we start
by considering the strong law of large numbers in probability theory. This will help us to
construct basic theory of a renewal-reward process.

Theorem 2.1.1. (Strong Law of Large Numbers (Kolmogorov’s law))
Let (Xi)i∈N be a sequence of mutually independent and identically distributed random vari-
ables such that E[|X1|] <∞. Then, almost surely

lim
n→∞

Yn = E[X1]. (2.1.9)

where Yn = 1
n

∑n
i=1Xi, for n ≥ 1.

Here, we recall the classical proof under the assumption

∞∑
n=1

1

n2
Var(Xn) <∞. (2.1.10)
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Proof. Let X1, X2, X3, . . . be a sequence of i.i.d. random variables with finite mean µ and
Yn = 1

n

∑n
i=1Xi. Without loss of generality, we assume E[Xn] = 0 (n = 1, 2, . . .). For ϵ > 0,

we define

A(ϵ) =
∞⋃

N=1

∞⋂
n=N

{|Yn|< ϵ}

Our goal is to prove for any ϵ > 0, P (A(ϵ)) = 1.
For deriving the above statement, we introduce, for m ≥ 1

Bm(ϵ) ≡
2m−1⋃

n=2m−1

{|Yn|≥ ϵ} = {max2m−1≤n<2m |Yn|≥ ϵ} . (2.1.11)

And for any l = 1, 2, . . ., we have

A(ϵ)c =
∞⋂

N=1

∞⋃
n=N

{|Yn|≥ ϵ} ⊂
∞⋃

m=l

Bm(ϵ). (2.1.12)

Next, we evaluate the probability P (Bm(ϵ)). Let, Zn =
∑n

k=1Xk(= nYn) be a sum of the
random variables.

P (Bm(ϵ)) = P

(
max

2m−1≤n<2m

1

n
|Zn|≥ ϵ

)
≤ P

(
max

2m−1≤n<2m
|Zn|≥ ϵ2m−1

)
≤ P

(
max

1≤n<2m
|Zn|≥ ϵ2m−1

)
≤ 1

ϵ222m−2

2m∑
k=1

Var(Xk), (2.1.13)

where we used Kolmogorov’s inequality for last line. Therefore, the evaluation of P (Bm(ϵ))
is given by

P (Bm(ϵ)) ≤ 4

ϵ2

∞∑
m=1

1

22m

2m∑
k=1

Var(Xk)

=
4

ϵ2

∞∑
m=1

∞∑
k=1

1

22m
Var(Xk)

=
4

ϵ2

∞∑
k=1

Var(Xk)
∞∑

m′=mk

1

22m′

≤ 16

3ϵ2

∞∑
k=1

Var(Xk)
1

k2
<∞, (2.1.14)
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where the integer mk satisfies 2mk−1 < k ≤ 2mk . Under the assumption (2.1.10), the last line
converges. Finally, according to (2.1.14) and Borel-Cantelli lemma, we can prove

P (A(ϵ)c) = 0 ⇔ P (A(ϵ)) = 1. (2.1.15)

When we consider the case of E[Xn] = µn, we replace |Yn|< ϵ with |Yn − µn|< ϵ in the
above proof. It gives the same result.

The law of large numbers has a very central role in probability theory. Moreover, the
strong law of large numbers is useful for proving the law of large numbers in a renewal-
reward process.

Theorem 2.1.2. (Law of Large Numbers in a Renewal Process)
When 0 < µ <∞, the counting process Nt satisfies

lim
t→∞

Nt

t
=

1

µ
(2.1.16)

with probability 1.

Proof. From the definition of a renewal-reward process, SNt ≤ t < SNt+1 for t > 0, which
gives

SNt

Nt

≤ t

Nt

<
SNt+1

Nt

. (2.1.17)

From the strong law of large numbers, we know Sn/n→ µ as n→ ∞ with probability 1. It
follows that SNt/Nt → µ as t → ∞ since Nt → +∞ as t → +∞ a.s.. Moreover, we can see
(Nt + 1)/Nt → 1 as t→ ∞ with probability 1. Thus,

lim
t→∞

t

Nt

= µ. (2.1.18)

In the study of a stochastic process, we often calculate random sums and expected values
of it. Wald’s identity is an important identity for calculating expected value of random sums
of random variables.

Lemma 2.1.3. (Wald’s Identity)
Let X1, X2, X3, . . . be a sequence of i.i.d. random variables with finite mean. Let N be an
integer-valued stopping time with E[N ] <∞. Then, we have,

E[X1 +X2 + · · ·+XN ] = E[X1]E[N ]. (2.1.19)

Proof. A random sum of random variables is calculated as

E[X1 +X2 + · · ·+XN ] = E

[
∞∑
n=1

Xn1l{N ≥ n}

]
=

∞∑
n=1

E [Xn1l{N ≥ n}]

=
∞∑
n=1

E [E[Xn1l{N ≥ n}|X1, . . . , Xn−1]] . (2.1.20)
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where n is a positive integer. Note that since N is a stopping time, 1l{N ≥ n} = 1− 1l{N ≤
n − 1} is a function of X1, . . . , Xn−1 because the event {N ≤ n − 1} is determined by
X1, . . . , Xn−1. Therefore, we can divide indicator function and random variables.

∞∑
n=1

E [E(Xn1l{N ≥ n}|X1, . . . , Xn−1)] =
∞∑
n=1

E [1l{N ≥ n}E(Xn|X1, . . . , Xn−1)]

=
∞∑
n=1

E [1l{N ≥ n}E[Xn]]

= E[X1]
∞∑
n=1

P(N ≥ n) = E[X1]E[N ] (2.1.21)

Theorem 2.1.4. (Elementary Renewal Theorem)
Let, Nt be a counting process such that µ = E[τ1] satisfies 0 < µ < ∞. Then the renewal
function E[Nt] = m(t) satisfies

lim
t→∞

m(t)

t
=

1

µ
. (2.1.22)

Proof. First of all, we show a lower bound on m(t)/t by using SNt+1, which is the epoch of
the first arrival after time t. From Wald’s identity and t < SNt+1

t < E[SNt+1] = (m(t) + 1)µ

⇔ m(t)

t
>

1

µ
− 1

t
(2.1.23)

Clearly this lower bound approaches 1/µ as t → ∞. For the upper bound, we introduce
truncated arrival times. For an arbitrary constant a > 0, let τa,i = min(a, τi) and consider
the renewal process with the sequence of inter-arrival times τa = (τa,1, τa,2, . . .). Since these
truncated random variables are i.i.d, they form a related renewal counting process Na,t with
ma(t) = E[Na,t]. Moreover, we have ma(t) ≤ m(t). As with deriving the lower bound, Wald’s
identity gives (ma(t) + 1)µa ≤ t+ a. Therefore,

m(t)

t
≤ ma(t)

t
≤
(

1

µa

+
a

tµa

)
− 1

t
. (2.1.24)

Finally, limt→∞m(t)/t → 1/µa and µa → µ as a → ∞. Thus, the upper bound approaches
1/µ as t→ ∞.

For the reward function g(t), we can derive the elementary renewal theorem for reward
function by using the elementary renewal theorem for the renewal function. Wald’s identity
shows E[R(t) +Xn+1] = E[X1](m(t) + 1). Then, we can derive

E[X1]m(t) + E[X1]

t
=

E[X1]

µ
+

E[X1]

t
→ E[X1]

µ
(2.1.25)

as t→ ∞.
The elementary renewal theorem for a reward function implies that the expected value of

the sum of random reward increases in proportion to time with the density of the average of
rewards.



2.1. RENEWAL THEORY 31

Theorem 2.1.5. (Blackwell’s theorem (Renewal Theorem))
Let, Nt be a counting process such that µ = E[τ1] satisfies 0 < µ < ∞. Asymptotically,
the expected number of renewals in an interval is proportional to the length of the interval.
Namely,

lim
t→∞

[m(t+ a)−m(t)] =
a

µ
(2.1.26)

for all a ≥ 0.

By using the elementary renewal theorem, we can prove Blackwell’s theorem.

Proof. First, we define

g(x) := lim
t→∞

[m(t+ x)−m(t)] (x ≥ 0). (2.1.27)

Note that

m(t+ x+ y)−m(t) = m(t+ x+ y)−m(t+ x) +m(t+ x)−m(t). (2.1.28)

Let t→ ∞, we conclude that

g(x+ y) = g(x) + g(y) (x, y ≥ 0). (2.1.29)

Namely, the function g(x) is a linear function. Therefore, for any x ≥ 0, g(x) is given by

g(x) = cx, (2.1.30)

where c is a constant. For deriving the value of c, we define a sequence

xn = m(n)−m(n− 1) (n ∈ N). (2.1.31)

Note that,
∑n

i=1 xi = m(n) and limn→∞ xn = g(1) = c. Therefore, we have

lim
n→∞

∑n
i=1 xi
n

= lim
n→∞

m(n)

n
=

1

µ
. (2.1.32)

Here, by noting that
∑n

i=1 xi/n = c for any n ≥ 1 we obtain c = 1/µ.

2.1.3 Renewal Equation

In this subsection, we discuss the renewal equation. It will be the base of our discussion of
the finite time correction to the renewal theorem. We start by introducing the conditional
expectation of a counting process with first arrival time for deriving the renewal equation.
The renewal function is:

m(t) = E[Nt] = E[E(Nt | τ1)], (2.1.33)

where t is time and the probability distribution function is p(t). In addition, splitting the
domain of integration [0,∞) into two parts [0, t] and (t,∞):

m(t) =

∫ ∞

0

E[Nt | τ1 = s]p(s)ds =

∫ t

0

E[Nt | τ1 = s]p(s)ds+

∫ ∞

t

E[Nt | τ1 = s]p(s)ds.

(2.1.34)
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If s > t then E[Nt | τ1 = s] = 0. If 0 ≤ s ≤ t, the renewal property says that E[Nt | τ1 =
s] = 1 +m(t− s). Thus we have

m(t) =

∫ t

0

[1 +m(t− s)]p(s)ds = F (t) + (m ∗ p)(t), (2.1.35)

where F (t) is a cumulative distribution function (CDF). This equation includes the informa-
tion of how to renew the events and the memory of the process. Let’s consider the renewal
equation for a Poisson process. In that cas we have F (t) = 1− e−rt for the cumulative dis-
tribution function. This cumulative distribution function satisfies F (∞) = 1 and F (0) = 0.
The renewal equation is given by

m(t) = 1− e−rt +

∫ t

0

m(t− s)re−rsds. (2.1.36)

Substituting x = t− s in the integral gives

m(t) = 1− e−rt + re−rt

∫ t

0

m(x)e−rxdx. (2.1.37)

multiplying through by ert, differentiating with respect to t the equation is

(m(t)ert)′ = rert + r(

∫ t

0

m(x)e−rxdx)′

m′(t) = r

⇒ m(t) = rt (2.1.38)

because m(0) = 0. the result follows. Of course, we recover the result of the renewal theorem

lim
t→∞

m(t)

t
=

1

µ
(2.1.39)

where µ is the mean value of an inter-arrival times. We will extensively use the Laplace
transform of the renewal equation in the next chapter. The Laplace transform of a renewal
equation is one of the way to analyse this convolution equation. Laplace transform is defined
as

L[f ](s) = f̃(s) =

∫ ∞

0

e−stf(t)dt. (2.1.40)

By using the Laplace transform, the convolution term of a renewal equation is divided in a
product. Therefore, the Laplace transform of a renewal equation is calculated as∫ ∞

0

e−stm(t)dt =

∫ ∞

0

e−stF (t)dt+

∫ ∞

0

dt

∫ t

0

e−stm(t− x)p(x)

m̃(s) = F̃ (s) +

∫ ∞

0

dt

∫ t

0

e−s(t−x)e−sxm(t− x)p(x)

= F̃ (s) +

∫ ∞

0

dye−sym(y)

∫ ∞

0

e−sxp(x)

= F̃ (s) + m̃(s)p̃(s), (2.1.41)
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where we performed change of variables as t− x = y. The cumulative distribution function
F and the renewal function m have the relation as follows:

m̃(s) =
F̃ (s)

1− p̃(s)

=
F̃ (s)

1− sF̃ (s)
. (2.1.42)

As with (5.1.5), we consider exponential distribution for solving (2.1.42). Laplace transform
of F (t) = 1− e−rt is given by

F̃ (s) =

∫ ∞

0

e−st(1− e−rt)dt =
1

s
− 1

s+ r
. (2.1.43)

We substitute the result of the F̃ (s) into (2.1.42).

m̃(s) =
F̃ (s)

1− p̃(s)

=
1
s
− 1

s+r

1− s
(
1
s
− 1

s+r

)
=

r

s2
. (2.1.44)

Thus taking the inverse Laplace transform, we recover m(t) = rt.

2.1.4 Renewal Equation for a Moment Generating Function

It is also possible to obtain a renewal equation for the moment generating function (MGF).
For constructing the renewal equation of MGF of Nt, we calculate the expected value of ehNt

as in the previous subsection (h ∈ R is a biasing field). The expected value of the MGF of
Nt is given by

M(t) = E[ehNt ] = E[E[ehNt | τ1]] (2.1.45)

and breaks the domain of integration [0,∞) into two parts [0, t] and (t,∞):

M(t) =

∫ ∞

0

E[ehNt | τ1 = s]p(s)ds =

∫ t

0

E[ehNt | τ1 = s]p(s)ds+

∫ ∞

t

E[ehNt | τ1 = s]p(s)ds

= eh
∫ t

0

E[ehNt−s ]p(s)ds+

∫ ∞

t

p(s)ds

= [1− F (t)] + eh
∫ t

0

M(t− s)p(s)ds (2.1.46)

When h < 0, the Laplace transformation of (2.1.46) is

M̃(s) =
1
s
− F̃ (s)

1− ehsF̃ (s)
. (2.1.47)
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Again, we apply this relation to the simple case of a Poisson process. Namely, we consider
the case of F (t) = 1− e−rt and calculate the renewal equation.

M(t) = [1− F (t)] + eh
∫ t

0

M(t− s)p(s)ds = e−rt + eh
∫ t

0

M(t− s)re−rsds

= e−rt + rehe−rt

∫ t

0

M(y)erydy (y = t− s)

→ dM(t)

dt
= −re−rt − r2ehe−rt

∫ t

0

M(y)erydy + rehM(t)

= −re−rt − r2eh
M(t)− e−rt

reh
+ rehM(t)

= rM(t)(eh − 1). (2.1.48)

Accordingly we derived differential equation of M(t) = E[ehNt ]. Therefore M(t) is given by

M(t) = e−rt(1−eh) (2.1.49)

because M(0) = 1. When we consider the renewal equation of the MGF with heavy-tailed
distribution, the calculation is more complex than the case of exponential distribution be-
cause of the singularity of the power law function. We will explain the calculation in main
part of this thesis.

2.1.5 Inverse Laplace Transform Method for a MGF

Here, we study the derivation of the asymptotic form of MGF by using inverse Laplace
transfrom. From the previous subsection, we derived the MGF in Laplace space:

M̃(s) =
1
s
− F̃ (s)

1− ehsF̃ (s)
. (2.1.50)

By using the relation sF̃ = p̃, we can rewrite the above equation as

M̃(s) =
1
s
− F̃ (s)

1− ehp̃(s)
. (2.1.51)

To describe the large time asymptotic form of MGF, we expand p̃(s). It is given by

p̃(s) =
∑
i=0

cis
i, (2.1.52)



2.1. RENEWAL THEORY 35

where ci is an expansion coefficient. Then, M̃(s) is calculated as

M̃(s) =
1
s
− F̃ (s)

1− ehp̃(s)

=
1
s
− F̃ (s)

1− eh
∑

i=0 cis
i

=
1

1− eh

1
s
− F̃ (s)

1− eh

1−eh

∑
i=1 cis

i

=
1
s
− F̃ (s)

(1− eh)

1 +
eh

1− eh

∑
i=1

cis
i +

(
eh

1− eh

∑
i=1

cis
i

)2

+ · · ·

 . (2.1.53)

In addition, 1/s− F̃ (s) can be described as 1−F (t) in normal space. Finally, for large time
asymptotic form, we can get M(t) by using inverse Laplace transform. It is given by

M(t) ∼ 1− F (t)

1− eh
(2.1.54)

as t→ ∞.
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2.2 Large Deviation Theory

The theory of large deviations is the mathematical framework for analyzing the asymptotic
behavior of the probabilities of rare events (or fluctuations) in probability theory. In par-
ticular, it focuses on the exponential decay of probability distributions of such events. In
addition, in statistical mechanics, the large deviations theory corresponds to some physical
statements. Large deviations theory is one of the methods to analyze non-equilibrium and
equilibrium fluctuations in systems made of a large number of components. It provides a
rigorous formulation of statistical mechanics, and a generalization of Einstein’s fluctuation
theory. Roughly speaking, the large deviation principle (LDP) states

P (Sn ≃ s) ∼ e−nI(s), as n→ ∞, (2.2.1)

where the some positive function I is called the rate function and Sn is a stochastic pro-
cess taking value in R. Note that, the rate function I need to satisfy some mathematical
conditions for large deviations principle. In good cases, the rate function I is equal to the
Legendre transform of the scaled cumulant generating function (CGF) φ : R → R

φ(h) = lim
n→∞

1

n
logE[ehSn ], (2.2.2)

i.e., I(s) = suph∈R{hs−φ(h)}. Here h ∈ R is called a biasing field. In the following subsec-
tion, we introduce the formulation of the large deviation theory by using some mathematical
theorems.

2.2.1 Large Deviation Principle

Here, we refer to the condition of the rate function I for LDP. The rigorous definition of the
large deviation principle is constructed by the following elements. This subsection follows
Hollander’s book [18]. Let E be a Polish space with distance d : E × E → [0,∞).

Definition 2.2.1. f : E → [−∞,∞] is lower semi-continuous if it satisfies any of the
following equivalent properties:

(i) lim infn→∞ f(xn) ≥ f(x) for all (xn), x such that xn → x in E.

(ii) limϵ↓0 infy∈Bϵ(x) f(y) = f(x) with Bϵ(x) = {y ∈ E : d(x, y) < ϵ}.

(iii) f has closed level sets, i.e., f−1([−∞, c]) = {x ∈ E : f(x) ≤ c} is closed for all c ∈ R.

Next, we introduce the key definitions of large deviation theory.

Definition 2.2.2. The function I : E → [0,∞] is called a rate function if

(i) I ̸≡ ∞.

(ii) I is lower semi-continuous

(iii) I has compact level sets.
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Definition 2.2.3. A sequence of probability measures (Pn) on E is said to satisfy the LDP
with rate n and with rate function I if

(i) I is a rate function in the sense of Definition 2.2.2.

(ii) lim supn→∞
1
n
logPn(C) ≤ −I(C) ∀C ⊂ E closed.

(iii) lim infn→∞
1
n
logPn(O) ≥ −I(O) ∀O ⊂ E open.

Here, the bounds are in terms of the set function defined by

I(S) = inf
x∈S

I(x), S ⊂ E. (2.2.3)

The goal of large deviation theory is to build up an arsenal of theorems based on these
two definitions. When I has compact level sets, I is called as a ”good rate function”. LDP
holds under some mathematical conditions of probability measures. Roughly, LDP states
that the probability measures have a similar expression as Pn(dy) ∼ e−nI(y)dy under the
above conditions. In order to apply them to concrete situations, one must verify that the
triple (E, (Pn), I) one is working with satisfies the LDP. We note that one could define a
large deviations principle with rate an where (an) is an increasing sequence going to infinity.
Finally, the definition of the large deviation for a sequence of random variables directly
follows the one of probability measures.

Definition 2.2.4. A sequence of random variables (Xn) with values in E and law Pn satisfies
a large deviation principle if and only if the sequence (Pn) satisfies a large deviation principle.

2.2.2 Gärtner-Ellis Theorem

We now consider the case of a sequence of random variables (Zn) taking values in R. We
assume that the scaled CGF satisfies the following conditions

1. limn→∞
1
n
logE[ehZn ] = φ(h) ∈ [−∞,∞]

2. There exists an open neighbourhood O of 0 such that φ(h) <∞ for every h ∈ O.

Gärtner-Ellis theorem links a probability of rare events (rate function) with a sCGF by
using the Legendre-Fenchel transform of a SCGF.

Theorem 2.2.1. (Gärtner-Ellis Theorem) If the SCGF φ is differentiable and such that
φ(h) <∞ for every h ∈ R , then the sequence of random variables (Zn) satisfies a LDP with
the rate function I given by the Legendre-Fenchel transform of φ(h):

I(x) = sup
h∈R

{hx− φ(h)}. (2.2.4)

The idea of the Gärtner-Ellis Theorem is the following. First, we assume

P(An ∈ da) ≍ e−nI(a)da. (2.2.5)
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Here, An is a real random variable and it is parameterized by the positive integer n. Then,
a MGF is calculated as 〈

enhAn
〉
≍
∫
R
en[ha−I(a)]da. (2.2.6)

Next, by using saddle-point approximation or Laplace’s approximation for this integral, we
can extract only the largest value of this integrand. Therefore, assuming that the maximumu
of ha− I(a) exists and is unique, we obtain〈

enhAn
〉
≍ exp

(
n sup

a∈R
{ha− I(a)}

)
. (2.2.7)

and so

φ(h) = lim
n→∞

1

n
log⟨enhAn⟩ = sup

a∈R
{ha− I(a)}. (2.2.8)

For deriving I(a) in terms of φ(h), we then use the fact that Legendre-Fenchel transfroms
can be inverted when φ(h) is everywhere differentiable. In this case, we can write

I(a) = sup
h∈R

{ha− φ(h)}. (2.2.9)

In more detail, we give an heuristic proof using the saddle-point approximation in appendix.
The object of our research will concern situations where the Gartner-Ellis can not be applied
because of the lack of differentiability of the SCGF. A special case of the Gartner-Ellis is
the well-known Cramer’s theorem which consider the case of Zn given by a sum independent
random variables.

Theorem 2.2.2. (Cramer’s Theorem) Let an i.i.d sequence of random variables (Xi) and
their a sample mean defined as

Yn =
1

n

n∑
i=1

Xi. (2.2.10)

We assume that Xi satisfies
E[ehX1 ] <∞. (2.2.11)

Then, for all a > E[X1], we have

lim
n→∞

1

n
logP(Yn ≥ a) = −I(a), (2.2.12)

where
I(a) = sup

h∈R
[ah− logE[ehX1 ]]. (2.2.13)

In this case the SCGF has the simple form

φ(h) = lim
n→∞

1

n
logE

[
e

1
n

∑n
i=1 Xi

]
= lim

n→∞

1

n
log

n∏
i=1

E
[
ehXi

]
= logE

[
ehX
]
, (2.2.14)

where X is any of the summands Xi. When we calculate the large deviation function by
using the Legendre-Fenchel transform of CGF φ(h), we need to take into the account the
differentiability of φ(h). However, E

[
ehX
]
is always real analytic when it exists for all h ∈ R.



2.2. LARGE DEVIATION THEORY 39

2.2.3 Varadhan’s Lemma

Varadhan’s lemma is known as a version of Laplace’s method for infinite-dimensional spaces.
The Laplace principle is known as∫ b

a

enf(x)g(x)dx ≍ exp

[
n sup

[a,b]

f(x)

]
, n→ ∞ (2.2.15)

where f, g are the continuous functions f, g > 0 on the bounded closed interval [a, b]. More-
over, from a view point of Gärtner-Ellis theorem, if An satisfies a LDP with rate function
I(a), then a CGF ϕ(k) is the Legendre-Fenchel transform of I(a):

φ(k) = lim
n→∞

1

n
E
[
enkAn

]
= sup

a
{ka− I(a)}. (2.2.16)

Replacing the product kAn by an arbitrary continuous function f of An yields the more
general result

φ(f) = lim
n→∞

1

n
logE

[
enf(An)

]
= sup

a
{f(a)− I(a)}. (2.2.17)

The above relation is known as Varadhan’s lemma.

Lemma 2.2.3. For any ϵ > 0, if Aϵ are random variables in a metric space M , obeying an
LDP with rate 1/ϵ and the rate function I, and f :M → R is continuous and bounded from
above, then

φ(f) ≡ lim
ϵ→0

ϵ logE
[
ef(Aϵ)/ϵ

]
= sup

a∈M
{f(a)− I(a)}. (2.2.18)

Here, we take continuous parameter ϵ instead of 1/n.

Proof. For the proof, we consider the lower bound and upper bound of RHS of (2.2.18).

Lower bound

To consider the lim inf, we take a ∈ Aϵ and arbitrary ball of radius δ around it, Bδ,a. Then,
we have

lim
ϵ→0

inf ϵ logE
[
ef(Aϵ)/ϵ

]
≥ lim

ϵ→0
inf ϵ logE

[
ef(Aϵ)/ϵ1lBδ,a

(Aϵ)
]

= lim
ϵ→0

inf ϵ log

∫
Bδ,a

[
ef(a)/ϵµϵ(Aϵ ∈ da)

]
≥ inf

y∈Bδ,a

f(y)− inf
y∈Bδ,a

I(y)

≥ inf
y∈Bδ,a

f(y)− I(a), (2.2.19)

where we use the Laplace’s principle (without sup for lower bound) and LDP with sufficient
small ϵ for denoting third line. Since δ was arbitrary, we can let it go to zero. Hence,
infy∈Bδ,a

f(y) → f(a). Therefore, we have

lim
ϵ→0

ϵ logE
[
ef(Aϵ)/ϵ

]
≥ f(a)− I(a) → sup

a
{f(a)− I(a)} (2.2.20)

since this relation holds for arbitrary a.
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Upper bound

Since f is bounded, there exists C ∈ (0,∞) such that −C ≤ f(a) ≤ C for all a ∈M . For N
positive integer, and j ∈ {1, . . . , N}, we consider the closed subset of M

FN,j = {a ∈M : −C +
2(j − 1)C

N
≤ f(a) ≤ −C +

2jC

N
}, (2.2.21)

so that
⋃N

j=1 FN,j =M . Then, we have from the large deviation upper bound on (Aϵ).

lim
ϵ→0

sup ϵ logE
[
ef(Aϵ)/ϵ

]
= lim

ϵ→0
sup ϵ log

∫
M

ef(Aϵ)/ϵµϵ(Aϵ ∈ da)

≤ lim
ϵ→0

sup ϵ log

(
N∑
j=1

∫
FN,j

ef(Aϵ)/ϵµϵ(Aϵ ∈ da)

)

≤ lim
ϵ→0

sup ϵ log

(
N∑
j=1

e(−C+ 2jC
N

)/ϵµϵ(Aϵ ∈ FN,j)

)

≤ lim
ϵ→0

sup ϵ log

(
N max

j=1,...,N
e(−C+ 2jC

N
)/ϵµϵ(Aϵ ∈ FN,j)

)
≤ max

j=1,...,N

(
−C +

2jC

N
+ lim

ϵ→0
sup ϵ log µϵ(Aϵ ∈ FN,j)

)
≤ max

j=1,...,N

(
−C +

2jC

N
+ sup

a∈FN,j

[−I(a)]

)

≤ max
j=1,...,N

(
−C +

2jC

N
+ sup

a∈FN,j

[f(a)− I(a)]− inf
a∈FN,j

[f(a)]

)
≤ sup

a∈M
[f(a)− I(a)] +

2M

N
(2.2.22)

Letting N → ∞, we obtain the upper bound for satisfying Varadhan’s lemma.

2.2.4 Strong Large Deviation Theorem

The large deviation theory describes the connection between SCGF and the probability
(rate function). Here, we describe the so-called strong large deviation theory. A strong
large deviation theory is an extension of the large deviation theory for describing finite time
asymptotic form of CGF and the probability of rare events. This subsection is based on [10].
In 1960, Bahadur and Rao established an asymptotic expansion for the large deviations of
the sample mean in [19]. Let (Xn) be a sequence of iid random variables with zero mean
and finite variance σ2. As usual, the sample mean is defined as X̄n = n−1

∑n
k=1Xk. An

asymptotic expansion of the large deviation type for the tail probabilities of the sample
mean is of the form

P(X̄n ≥ c) =
e−nI(c)

√
2πnσcτc

[1 + O(1)], c > 0. (2.2.23)
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when n is sufficient large. Moreover, for any p > 0, the refinement of (2.2.23) is:

P(X̄n ≥ c) =
e−nI(c)

√
2πnσcτc

[
1 +

p∑
j=1

dj
nj

+O(
1

np
)

]
(2.2.24)

where dj ∈ R, and τc > 0, σc > 0 are parameters depending on c. The function I is the rate
function.

Here, we consider the case of p = 1 (it can be extended to any p ≥ 1 by using stronger
assumption). We start by describing some assumptions on the random variables.

Set-up

Let Zn be a sequence of random variables and bn be a sequence of real positive numbers such
that limn→∞ bn = ∞. Let ϕn be the MGF of bnZn,

φn(t) = E[etbnZn ], t ∈ R, (2.2.25)

and we consider the normalized CGF ϕ(t), which is given by

ϕn(t) =
1

bn
logE[etbnZn ]. (2.2.26)

We assume ϕ is a differentiable function in (0, α), α > 0, such that limn→∞ ϕn(t) = ϕ(t) for
any t ∈ (0, α). Let a be a real number such that a > ϕ′(0) and assume that there exists
τa ∈ (0, α) satisfying ϕ′(τa) = a. Moreover, we have I(a) := supt∈R{ta−ϕ(t)} = τaa−ϕ(τa).
Let Kn be the distribution function of bnZn and let Z∗

n be a new variable such that bnZ
∗
n is

distributed with K∗
n given by

K∗
n(u) =

∫
−∞<y<u

eyτa−bnϕ(τa)dKn(y). (2.2.27)

Let us define the standardized random variable Vn as follows:

Vn =
Z∗

n − µn√
Var(Z∗

n)
, (2.2.28)

where µn = E[Z∗
n]. Note that, Var(Z∗

n) = b−1
n ϕ′′

n(τa). Then, Vn may be expressed

Vn =
√
bn
Z∗

n − µn

σn
, (2.2.29)

where σn = ϕ′′
n(τa). We just prepare above the definitions of the system and we can describe

the assumptions for discussing a strong large deviation theory. In this context, a strong large
deviation theory is the expansion for the upper tail probability of Zn, which is P(Zn ≥ a),
where a > ϕ′(0).
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Assumption for a Strong Large Deviation Theory

By using the Edgeworth expansion, we can observe the correction terms for the rate function.
We will discuss the details of Edgeworth expansion in appendix A. Those correction terms
have the different type of decay from the original rate function. Therefore, a strong large
deviation theory is one of the way to analyze the finite time rate function (probability) and
sometimes it is a very useful approach. We assume that there exist functions J and L such
that for all n large enough.

ϕ(τa) = ϕ(τa) + b−1
n J(τa) + b−2

n L(τa) +O(b−2
n )

ϕ(k)(τa) = ϕ(k)(τa) + b−1
n J (k)(τa) +O(b−1

n ) k = 1, 2

ϕ(k)(τa) = ϕ(k)(τa) +O(1) k = 3, 4

ϕ(5)(τa) = O(1) (2.2.30)

Here ϕ
(k)
n is the k-th derivative of ϕn, the functions ϕ and J are, respectively, four times and

twice differentiable at τa, and ϕ
′′(τa) > 0. The number of derivative is given by the order of

Edgeworth expansion. In this Edgeworth expansion, we expand it with terms up to order
b
−3/2
n . By using the Hermite polynomials Hk, the Edgeworth expansion of Fn, which is the
distribution function of Vn is given by

Fn(y) = Φ(y)− Λ3,nH2(y)φ(y)

6b
1/2
n

− Λ4,nH3(y)φ(y)

24bn
−

Λ2
3,nH5(y)φ(y)

72bn
− P4,nφ(y)

b
3/2
n

+O(b−3/2
n ),

(2.2.31)

where Φ(y) is a cumulative distribution function and the remainder term O(b
−3/2
n ) is uniform

in y. Also, the Hermite polynomials are given by

H2(y) = y2 − 1

H3(y) = y3 − 3y

H5(y) = y5 − 10y3 + 15y.

In addition, P4,n is a linear combination of Hermite polynomials H4, H6 and H8 and also
depends on Λk,n, k = 3, 4, 5, where

Λk,n =
ϕ
(k)
n (τa)

σk
n

with σn =
√
ϕ′′
n(τa) (2.2.32)

Theorem 2.2.4. Let a be a real number such that a > ϕ′(0) and let assumptions (2.2.30)-
(2.2.31) hold. Then, the probability is given by

P(Zn ≥ a) =
e−bnI(a)+J(τa)

τa
√
2πbnϕ′′(τa)

[
1 + b−1

n d1 +O(b−1
n )
]

(2.2.33)

for sufficient large n. Here, τa > 0 is such that ϕ′(τa) = a and I(a) = τaa− ϕ(τa) and

(2.2.34 )
d1 = L(τa) +

1

ϕ′′(τa)

(
−J

′′(τa)

2
− (J ′(τa))

2

2
+
ϕ(3)(τa)J

′(τa)

2ϕ′′(τa)
− 5

24

(ϕ(3)(τa))
2

(ϕ′′(τa))2

+
ϕ(4)(τa)

8ϕ′′(τa)
+
J ′(τa)

τa
− ϕ(3)(τa)

2τaϕ′′(τa)
− 1

τ 2a

)
.
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Proof. The proof is explained in section 2. in [10]

2.3 Large Deviations Approach in Statistical Mechan-

ics

At present, the large deviation theory is applied to study the properties of physical systems,
which are consisting of many particles. Actually, the rate functions are related to thermo-
dynamic functions, for instance, entropy. To clarify the relation between the large deviation
theory and statistical mechanics, we start by considering a probability measure P(dω) on Λn,
which is the set or space of all microstates ω. Here, microstates ω are defined as a sequence
ω = (ω1, ω2, . . . , ωn) in n-particles system. Moreover, the physical interactions or depen-
dencies between the n particles are determined by a Hamiltonian or energy function Hn(ω).
Also, hn(ω) = Hn(ω)/n is the mean energy or energy per particle. The probability distribu-
tion of hn within the range of du, which is an infinitesimal interval in the neighborhood the
mean energy, is given by

P(hn ∈ du) =

∫
{ω∈Λn:hn(ω)∈du}

P(dω). (2.3.1)

In the so-called microcanonical formalism, the probability measure is given by P(dω) =
dω/|Λn|. Let Ω

Ω(hn ∈ du) =

∫
{ω∈Λn:hn(ω)∈du}

dω, (2.3.2)

be the number of microstates such that h(ω) ∈ du. When the probability measure satisfies
LDP, the rate function is calculated as

I(u) = lim
n→∞

− 1

n
logP(hn ∈ du). (2.3.3)

Then, recalling that the probability is defined by the volume, we have

I(u) = log|Λ|−s(u), (2.3.4)

where

s(u) = lim
n→∞

1

n
log Ω(hn ∈ du). (2.3.5)

is the microcanonical entropy or entropy density. In the following, we shall absorb the
constant log|Λ| by re-defining the entropy using the limit

s(u) = lim
n→∞

1

n
logP(hn ∈ du). (2.3.6)

for the probability measure. For this re-definition, we can see I(u) = −s(u). Note that, we
use kb = 1, which is the Boltzmann constant.

On the other hand, once we observe the relation between entropy and a rate function, then
we expect that the CGF of the energy has a relation with some thermodynamic functions.
The CGF is given by

φ(k) = lim
n→∞

1

n
logE[enkhn ]. (2.3.7)
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This satisfies
φ(k) = −ψ(β)|β=−k− log|Λ|, (2.3.8)

where

ψ(β) = lim
n→∞

− 1

n
log Ξn(β), (2.3.9)

and

Ξn(β) =

∫
Λn

e−nβhn(ω)P(dω) =
∫
Λn

e−βHn(ω)P(dω). (2.3.10)

β is the inverse temperature and Ξn(β) is the well-known n-particles partition function
associated with Hn, which is Hamiltonian or energy function. As we did with the entropy,
we shall absorb the constant log|Λ| in ψ(β) by re-defining this function as

ψ(β) = lim
n→∞

− 1

n
log

∫
Λn

e−nβhn(ω)P(dω) = lim
n→∞

− 1

n
logE

[
e−nβhn(ω)

]
. (2.3.11)

Actually, in statistical mechanics, the thermodynamic function f(β) is ψ(β)/β and ψ(β)
is sometimes called the Massieu potential. Therefore, by using Gärtner-Ellis Theorem or
Varadhan’s lemma, we can construct an entropy function as Legendre-Fenchel transform of
a Massieu potential (free energy function), and vice versa. Those are given by

s(u) = inf
β
{βu− ψ(β)} (2.3.12)

ψ(β) = inf
u
{βu− s(u)}. (2.3.13)

Therefore, we see that classical thermodynamic relations maybe interpreted as usual relations
in the context of large deviations theory.

2.3.1 Macroscopic Fluctuation Theory

Macroscopic fluctuation theory (MFT) is a general approach to study non-equilibrium dif-
fusive systems in modern statistical physics. Moreover, the MFT is useful to calculate large
deviation functions of diffusive systems [20–22]. In this subsection, we follow the approach
of macroscopic fluctuation theory in diffusive system. In large deviation theory, we can es-
timate the logarithm of the probability distribution of the arithmetic mean of microscopic
stochastic processes. However, in MFT, by using path integral, we can describe of the distri-
bution of the physical quantities by deriving the rate function in the large deviation theory
method.

Let us consider of a conservative system. The evolution of a field ρ = ρ(τ, x), which is
local density of thermodynamic variable, where τ and x are the macroscopic time and space
coordinates, is given by the continuity equation

∂τρ = ∇ · [D(ρ)∇ρ− χ(ρ)E] = −∇ · J(ρ), (2.3.14)

where D(ρ) is the diffusion constant matrix, χ(ρ) is the mobilityn E is the external field and

J(ρ) := −D(ρ)∇ρ+ χ(ρ)E, (2.3.15)
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where ρ = ρ(τ, x). For diffusive systems, one uses fluctuating hydrodynamics to describe
such a system in the large system size L limit; in such a diffusion system, one defines
hydrodynamics coordinates x = u/L and τ = t/L2 where u and t are position and time,
respectively. The hydrodynamic equation represents a law of large numbers with respect to
the probability measure Ps conditioned on an initial state X0. The path probability, which
depends on X0, is denoted by PX0 We define the free energy F (ρ) as a functional of the
density profile ρ = ρ(x). It gives the asymptotic probability of density fluctuations for the
invariant measure µ. It is given by

µ(πL(X) ≈ ρ) ≍ e−LdF (ρ), (2.3.16)

where d is the dimension of the system and πL is the local density. In general, ρ = ρ(τ, x) is
the limit of the local density πL(Xt). The meaning of πL(X) ≈ ρ is closeness with respect
to some metric and ≍ is logarithmic equivalence as L→ ∞. By using the local density and
the free energy, the probability is given by

Ps(πL(XL2τ ) ≈ ρ1(τ), τ ∈ [τ1, τ2]) ≍ exp{−Ld[F (ρ1(τ1)) + F[τ1,τ2](ρ1)]}, (2.3.17)

where F is a functional which vanishes if ρ1(τ) is a solution of (2.3.14) and F (ρ1(τ1)) is the
free energy cost to produce the initial density profile ρ1(τ1).

For discussing the current fluctuations, we introduce a vector-valued observable J L({Xσ, 0 ≤
σ ≤ τ}) of the trajectory X which measures the local net flow of particles. By taking into
the account the path probability of initial state X0 in the diffusive system, we have

PX0(J L(X) ≈ j(τ, x)) ≍ e−LdI[0,T ](j) (2.3.18)

where the rate functional is

I[0,T ](j) =
1

4

∫ T

0

dτ⟨[j − J(ρ)], χ−1(ρ)[j − J(ρ)]⟩. (2.3.19)

and

⟨f, g⟩ =
∫
Λ

dxf(x)g(x).

J(ρ) is obtained by solving the continuity equation with the initial condition ρ(0) = ρ0 which
is associated to X0. The fact that when we take j = J(ρ), the rate functional takes the 0
value reflects the law of large numbers for the observable J L. The functional formula is given
by (2.3.19) because the probability is calculated as the Gaussian integral, which is given by
the random variables in the system. Moreover, we can be interpreted the functional (2.3.19)
as an action on the set of density paths. The corresponding Lagrangian is calculated as

L(ρ, ∂τρ) =
1

4

∫
Λ

dx[∂τρ+∇ · J(ρ)]K−1(ρ)[∂τρ+∇ · J(ρ)], (2.3.20)

where the positive operatorK(ρ) is defined on functions ρ̂ : Λ → R vanishing at the boundary
∂Λ by

K(ρ)ρ̂ = −∇ · (χ(ρ)∇ρ̂). (2.3.21)
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The Hamiltonian H(ρ̂, ρ), ρ̂ is another field, is obtained by the Legendre transform of
L(ρ, ∂τρ):

H(ρ̂, ρ) = sup
k

{∫
Λ

dxρ̂k − L(ρ, k)
}

=

∫
Λ

dx {∇ρ̂ · χ(ρ)∇ρ̂− ρ̂∇ · J(ρ)} . (2.3.22)

Thus, the equation of motions are given by

∂τρ = ∇ · (D(ρ)∇ρ)−∇ · χ(ρ)(E + 2∇ρ̂) (2.3.23)

∂τ ρ̂ = −∇ρ̂ · χ′(ρ)(E +∇ρ̂)− Tr{D(ρ)Hess(ρ̂)}. (2.3.24)

Here, ρ̂ vanishes at the boundary of Λ. Hess(ρ̂) is Hessian of ρ̂. In addition, we introduce
the functional Φ, which is given by

Φ(J) = lim
T→∞

inf
j∈AT,J

1

T
I[0,T ](j), (2.3.25)

where the infimum is carried over all paths j = j(τ, x) having time average J and AT,J is
defined as

AT,J =

{
j = j(τ, x) :

1

T

∫ T

0

dτj(τ, x) = J(x)

}
. (2.3.26)

By using LDP (2.3.18), for T and L large, we have

PL
ρ0

(
1

T

∫ T

0

dτJ L(τ) ≈ J

)
≍ e−LdTΦ(J), (2.3.27)

where ρ0 is the initial state and the logarithmic equivalence is understood by taking first
L→ ∞ and then T → ∞. This asymptotic form can be formulated in terms of the MGF of
the empirical current. Then we have

lim
T→∞

lim
L→∞

1

TLd
logEL

ρ0

(
eL

d
∫ T
0 dτ⟨JL(τ),h(·,τ)⟩

)
= Φ∗(h), (2.3.28)

where h is a smooth function playing the role of a biasing field. Here, Φ∗(h) is the Legendre
transform of Φ(J), which has the following relation

Φ∗(h) = sup
J
{⟨h, J⟩ − Φ(J)}. (2.3.29)

In addition, we introduce the functional U on the set of time independent profiles ρ = ρ(x),
j = j(x) and ∇ · j = 0.

U(ρ, j) =
1

4
⟨[j − J(ρ)] · χ−1(ρ)[j − J(ρ)]⟩ (2.3.30)

U(j) = inf
ρ

U(ρ, j). (2.3.31)



2.A. SADDLE-POINT APPROXIMATION FOR GÄRTNER-ELLIS THEOREM 47

Here, the minimum in the definition of U(j) is carried over all profiles ρ satisfying the
boundary condition of the diffusion equation. This functional is constructed by the point of
view of rate functional formulation. Finally, we substitute the functional U into the Legendre
transform. Then we have

U∗(h) = sup
J,ρ

{
⟨h, J⟩ − 1

4
⟨[J − J(ρ)], χ−1(ρ)[J − J(ρ)]⟩

}
= sup

J,ρ

{
−1

4
⟨[J − J(ρ)− χ(ρ)h] · χ−1(ρ)[J − J(ρ)− χ(ρ)h]⟩+ 1

4
⟨h, χ(ρ)h⟩+ ⟨h, J(ρ)⟩

}
.

For computing the supremum over J , we decompose the vector field J(ρ) + χ(ρ)h as follows

J(ρ) + χ(ρ)h = χ(ρ)∇ψ + [J(ρ) + χ(ρ)(h−∇ψ)], (2.3.32)

where ψ has the constraints

∇ · (χ(ρ)∇ψ) = ∇ · (J(ρ) + χ(ρ)h) x ∈ Λ (2.3.33)

ψ(x) = 0 x ∈ ∂Λ (2.3.34)

By using the decomposition form, finally we get

U∗(h) = sup
ρ

{
−1

4
⟨∇ψ, χ(ρ)∇ψ⟩+ 1

4
⟨h, χ(ρ)∇ψ⟩+ ⟨h, J(ρ)⟩

}
, (2.3.35)

where the supremum is over all density profiles ρ, which is satisfies F ′
0(ρ(x)) = h0(x), x ∈ ∂Λ.

This derivation is based on the LDP for the rate functional, which is roughly (2.3.18). Once
the probability measure satisfies LDP, we can describe the probability by using the rate
function (functional). In such the (diffusive) systems, we can construct the path probability
through the external random field. The MFT can denote the path probability by using the
macroscopic equation and it is related to the fluctuations (cumulant) of the distribution
function deeply. In appendix, we introduce the physical approach of MFT.

2.A Saddle-point Approximation for Gärtner-Ellis The-

orem

Let Sn(ω) be a stochastic process and ω = (ω1, ω2, . . . , ωn) be the n random variables.
Without loss of generality, assume that the ωi’s are also real random variables, so that
ω ∈ Rn. Then the probability density pSn(s) is given by

pSn(s) =

∫
{ω∈Rn:Sn(ω)=s}

p(ω)dω =

∫
Rn

δ(Sn(ω)− s)p(ω)dω = E[δ(Sn − s)]. (2.A.1)

Here, δ(x) is a delta function. In addition, by using inverse Laplace transform the integral
representation of Dirac’s delta function is expressed as

δ(s) =
1

2πi

∫ a+i∞

a−i∞
eθsdθ a ∈ R, (2.A.2)
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where we use the fact that Laplace transform of a delta function is 1. Therefore, pSn(s) is
calculated as

pSn(s) =
1

2πi

∫ a+i∞

a−i∞
dθ

∫
Rn

eθ|Sn(ω)−s|p(ω)dω =
1

2πi

∫ a+i∞

a−i∞
dθe−θs

∫
Rn

eθSn(ω)p(ω)dω.

(2.A.3)
At this point, we anticipate the scaling of the large deviation principle by performing the
change of variable θ → nθ, and note that if

φ(θ) = lim
n→∞

1

n
E[enθSn ] (2.A.4)

exists, then

pSn(s) ≍
∫ a+i∞

a−i∞
dθe−n[θs−φ(θ)] (2.A.5)

with sub-exponential corrections in n. Here, ≍ can be interpreted as expressing an equality
relationship on a logarithmic scale. In large deviation theory, the sign ≍ is often commonly
used. The mathematical meaning of cn ≍ dn is given by

lim
n→∞

1

n
log cn = lim

n→∞

1

n
log dn. (2.A.6)

In addition, by deforming the contour so that it goes through the saddle-point θ∗ of θs−φ(θ),
and by considering only the exponential contribution to the integral coming from the saddle-
point, we then describe

pSn(s) ≍
∫ θ∗+i∞

θ∗−i∞
d(−iθ)e−n[θs−φ(θ)] ≍ e−n[θ∗s−φ(θ∗)] (2.A.7)

The last approximation is the saddle-point approximation. For using the approximation
method, the integrand satisfies that it has extremum and the value of integrand decreases
sharply out of range of extremum. Moreover, if we assume that φ(θ) is analytic, then θ∗ is
the unique minimum of θs − φ(θ) satisfying φ′(θ∗) = s along the contour. Finally, we can
denote

lim
n→∞

− 1

n
log pSn(s) = sup

k∈R
{ks− φ(k)}. (2.A.8)

The Gärtner-Ellis theorem shows the connection between SCGF and the probability. For
instance, when we consider the random variables of physical quantities for SCGF, we can
describe the rate function by using the form of Legendre-Fenchel transform.

2.B Edgeworth Expansion

For a strong large deviation theory, we have applied the Edgeworth expansion to derive the
higher order asymptotic form of the probability distribution function. Here, we introduce
the way of the Edgeworth expansion. Without loss of generality, let {Zi}i∈N be a sequence
of i.i.d. random variables with the conditions E[Zi] = 0 and Var[Zi] = 1. Also, Zn is
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Vn = n−1/2
∑n

i=1 Zi (standardizing random variables in statistics). For the asymptotic form of
the probability distribution function, we consider the expansion of the characteristic function,
which is calculated as

logE[eiuVn ] = n logE[eiuZ1/
√
n]

= n log

(
1− u2

2n
+

(iu)3κ3
6n3/2

+
(iu)4κ4
24n2

+
(iu)6κ23
72n2

+O

(
1

n5/2

))
= −u

2

2
+

(iu)3κ3
6n1/2

+
(iu)4κ4
24n

+
(iu)6κ23
72n

+O

(
1

n3/2

)
. (2.B.1)

Here, κi(i = 1, 2, . . . , ) is the cumulant. Then, the MGF is

E[eiuVn ] = exp

(
−u

2

2
+

(iu)3κ3
6n1/2

+
(iu)4κ4
24n

+
(iu)6κ23
72n

+O

(
1

n3/2

))
= e−

u2

2

(
1 +

(iu)3κ3
6n1/2

+
(iu)4κ4
24n

+
(iu)6κ23
72n

+O

(
1

n3/2

))
. (2.B.2)

Therefore, by using an inverse Fourier transform F−1, the probability density function pn(y)
of Vn is given by

pn(y) = F−1[E[eiuVn ]](y)

=
1

2π

∫
R
e−iuye−

u2

2

(
1 +

(iu)3κ3
6n1/2

+
(iu)4κ4
24n

+
(iu)6κ23
72n

+O

(
1

n3/2

))
dy

=
1

2π

∫
R

(
1 +

(−∂y)3κ3
6n1/2

+
(−∂y)4κ4

24n
+

(−∂y)6κ23
72n

+O

(
1

n3/2

))
e−iuye−

u2

2 dy

=

(
1 +

(−∂y)3κ3
6n1/2

+
(−∂y)4κ4

24n
+

(−∂y)6κ23
72n

+O

(
1

n3/2

))
φ(y). (2.B.3)

Here, φ(y) is the characteristic function of e−u2/2. Note that, if φ(y) denotes standard normal
density function. then we define the Hermite polynomials Hi(y) by the equation

(−1)i
di

dyi
φ(y) = Hi(y)φ(y). (2.B.4)

Thus, we obtain

pn(y) = φ(y) +
κ3

6n1/2
H3(y)φ(y) +

κ4
24n

H3(y)φ(y) +
κ23
72n

H4(y)φ(y) +O

(
1

n3/2

)
. (2.B.5)

Moreover, the asymptotic form of the probability distribution function P (Vn ≤ z) is given
by P (Vn ≤ z) =

∫ z

−∞ pn(y)dy. The Edgeworth expansion is one of the ways to denote the
asymptotic behavior of the probability with small finite n. Conversely, when we consider
sufficient large n, the standardizing random variables Vn converges to N(0, 1) as n → ∞
(central limit theorem). Therefore, when we consider the case of small n, we may need to
use approximate method for the probability distribution function in limit theorem because
the probability distribution function is out of the normal distribution. In the context of a
strong large deviation theory, by using the Edgeworth expansion, we can discuss the finite
time asymptotic behavior of the rate function (probability).
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2.C Physical Approach of MFT

We start by considering the non-equilibrium steady state of a one-dimensional system coupled
with two hot walls (heat baths), which have different temperatures. One uses fluctuating
hydrodynamics to describe such a system in the large system size L limit; in systems where
diffusion is the transport mechanism, one defines hydrodynamics coordinates x = X/L and
τ = t/L2 where X and t are position and time, respectively. Let ρ(x, τ) be a hydrodynamic
density and J(x, τ) be a hydrodynamic current, then the conservation law and Fick’s law
with fluctuating hydrodynamics are given by

∂τρ(x, τ) = ∂xJ(x, τ) (2.C.1)

J(x, τ) +D(ρ(x, τ ))∂xρ(x, τ) = ξ(x, τ ), (2.C.2)

where D(ρ) is the diffusivity and ξ(x, τ) is a Gaussian random noise. The random noise
satisfies

⟨ξ(x, τ )ξ(y, τ ′)⟩ = 1

L
σ(ρ(x, τ))δ(x− y)δ(τ − τ ′), (2.C.3)

where σ(ρ) is the mobility. Also, ⟨O⟩ is an expected value of observable O.
By using the equations (2.C.1), the generating function is given by〈
eL

∫ T
0 dτ

∫ 1
0 dxh(x,τ)J(x,τ)

〉
=

∫
dξδ(∂τρ+ ∂xJ)e

L
∫ T
0 dτ

∫ 1
0 dxh(x,τ)J(x,τ)e−

ξ2

2σ(ρ)

=

∫
D[J, ρ]δ(∂τρ+ ∂xJ)e

L
∫ T
0 dτ

∫ 1
0 dx

[
h(x,τ)J(x,τ)− (J+D(ρ)∂xρ)2

2σ(ρ)

]
,

(2.C.4)

where T is an arbitrary large time and D is the expression of path integral. The path integral
is over all density and current fields with a boundary condition

ρ(0, τ) = ρa ρ(1, τ) = ρb. (2.C.5)

The delta function can be written as an integral with another field ρ̂(x, τ). ρ̂(x, τ) have to
vanish at the boundary as the particles are not conserved

ρ̂(0, τ) = 0 = ρ̂(1, τ). (2.C.6)

Then, by using the classical action S[ρ̂, ρ], the generating function of the current J(x, τ) is
calculated as 〈

eL
∫ T
0 dτ

∫ 1
0 dxh(x,τ)J(x,τ)

〉
=

∫
D[ρ̂, ρ]e−LS[ρ̂,ρ]. (2.C.7)

In addition, the action S[ρ̂, ρ] has the relation with Hamiltonian H[ρ̂, ρ]. It is given by

S[ρ̂, ρ] =

∫ T

0

dτ

(∫ 1

0

dxρ̂∂τρ−H[ρ̂, ρ]

)
(2.C.8)

with a Hamiltonian

H[ρ̂, ρ] =

∫ 1

0

dx

(
σ[ρ]

2
(∂xρ̂+ h)2 −D(ρ)(∂xρ̂+ h)∂xρ

)
, (2.C.9)
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where we use the following computation.〈
eL

∫ T
0 dτ

∫ 1
0 dxh(x,τ)J(x,τ)

〉
=

∫
dξδ(∂τρ+ ∂xJ)e

L
∫ T
0 dτ

∫ 1
0 dxh(x,τ)J(x,τ)e−

ξ2

2σ(ρ)

=

∫
D[ρ, ρ̂]

∫
dξeL

∫ T
0 dτ

∫ 1
0 dx(−ρ̂[∂τρ+∂x(D(ρ)∂xρ−ξ))])+h[ξ−D(ρ)∂xρ]e−

ξ2

2σ(ρ)

=

∫
D[ρ, ρ̂]

∫
dξeL

∫ T
0 dτ

∫ 1
0 dx[−ρ̂∂τρ−∂xρ̂D(ρ)∂xρ− 1

2σ
(ξ+σ(h+∂xρ̂))2+

1
2σ

(σ2(h+∂xρ̂)2)−hD(ρ)∂xρ]

=

∫
D[ρ, ρ̂]eL

∫ T
0 dτ

∫ 1
0 dx[−ρ̂∂τρ+(σ

2
(h+∂xρ̂)2−D(ρ)∂xρ(∂xρ̂+h))]

(2.C.10)

Denoting the paths associated to the least Action by (ρ̂, ρ) ≡ (p, q) one gets the CGF of
current

ϕ(h) = lim
L→∞

1

L
log
〈
eL

∫ T
0 dτ

∫ 1
0 dxh(x,τ)J(x,τ)

〉
= −S(p, q). (2.C.11)

By optimizing the fields (p, q), which is the variational principle of the action, we have
Hamilton’s equation

∂τp+ ∂x(∂xp+ h) = −σ
′[q]

2
(∂xp+ h)2 (2.C.12)

∂τq − ∂xxq = −∂x(σ[q](∂xp+ h)). (2.C.13)

The corresponding boundary conditions are given by

p(x, T ) = 0 q(x, 0) = ρ̄(x) = ρa(1− x) + ρbx. (2.C.14)

Moreover,
p(0, τ) = 0 = q(1, τ) q(0, τ) = ρa q(1, τ) = ρb (2.C.15)

at all time τ . By using (2.C.12) for the action, the CGF is calculated as

ϕ(h) = −
∫ T

0

dt

∫ 1

0

dx

[
σ(q)

2
(∂xp+ h)2 + h∂xq − hσ(q)(∂xp+ h)

]
. (2.C.16)

Using the SCGF for the action and the definition

ϕ(h) =

∫ T

0

dτ

∫ 1

0

dx⟨J(x, τ)⟩+ 1

2

∫ T

0

dτ1dτ2

∫ 1

0

dx1dx2⟨J(x1, τ1)J(x2, τ2)⟩+ · · · (2.C.17)

one gets for large L,

⟨J(x1, τ1), · · · , J(xk, τk)⟩c ≃
1

Lk−1
f(x1, t1, · · · , xk, tk), (2.C.18)

where f(x1, t1, · · · , xk, tk) is a scaling function. Therefore, we’ve clarified the relation between
CGF and hydrodynamics equation (diffusion equation). In this context, the large deviation
function is related to macroscopic equations. Thus, macroscopic fluctuation theory is one of
the strong ways to analyze the large deviation function in dynamical systems.





Chapter 3

Analysis of Finite Time Large
Deviation Theory with Heavy-tailed
Distributions

In this chapter, we study the large time asymptotic of renewal-reward processes with a
heavy-tailed waiting time distribution. It is known that the heavy tail of the distribution
produces an extremely slow dynamics, resulting in a singular large deviation function. This
amounts to a “flattened” bottom of the large deviation function, manifesting anomalous
fluctuations of the renewal-reward processes. In the following sections, we aim to study
how these singularities emerge as the time increases. Using a classical result on the sum of
random variables with regularly varying tail, we develop an expansion approach to prove an
upper bound of the finite-time MGF for the Pareto waiting time distribution (power law)
with an integer exponent. We perform numerical simulations using Pareto (with a real value
exponent), inverse Rayleigh and log-normal waiting time distributions, and demonstrate
similar results are anticipated in these waiting time distributions. First of all, we introduce
the previous research, which is the analysis of affine (flat) part of LDF, and clarify the
conditions for the affine part.

3.1 Background

3.1.1 The Affine Part of LDF

In a previous work [23], it has been observed that the LDF of the average energy current
carried by a particle between two thermal walls with different temperatures has a singular
part within a specific range. In that model the energy current is written as a renewal-
reward process with a heavy tailed distribution (inverse Rayleigh distribution). We want to
understand the emergence of that singular part of the LDF, see Fig.3.1.

The SCGF of the current displays a similar singularity see Fig. 3.2. After a rescaling the
arguments it is possible [23] to obtain an explicit form for both functions. Below, τ is the
rescaled temperature gradient applied at the boundaries of the interval and T the arithmetic
mean of the temperatures.

53
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Fig. 3.1: The rate function of the current H with an affine part in previous work [12].

1. If τ ̸= 0, then

lim
ϵ↓0

ϵ−2F(ϵλ, ϵτ, T ) = H(λ, τ, T ) :=


λκτ + κλ2T 2 if λτ > 0,
0 if λτ ∈ [−τ 2, 0],
−(λ+ τ)κτ + κ(τ + λ)2T 2 if λτ < −τ 2

(3.1.1)
and

lim
ϵ↓0

ϵ−2I(ϵj, ϵτ, T ) = G(j, τ, T ) :=



(j−κτ)2

4κT 2 if jτ > κτ 2

0 if jτ ∈ [0, κτ 2]
−jτ
2T 2 if jτ ∈ [−κτ 2, 0]

j2+κ2τ2

4κT 2 if jτ < −κτ 2.

(3.1.2)

2. If τ = 0, limϵ↓0 ϵ
−2F(ϵλ, ϵτ, T ) = κλ2T 2 and limϵ↓0 ϵ

−2I(ϵj, ϵτ, T ) = j2

4κT 2 ,

where H(λ, τ, T ) is the SCGF, G(j, τ, T ) is the scaling rate function and κ = (T/2π)1/2. The
following subsection, we will clarify the conditions of the affine part. The affine part of LDF
implies the system has a phase transition even though the system is finite. We will also
re-derive the SCGF by using variational principle in the following section (appendix).

3.1.2 Tsirelson’s Work

In reference [11], Tsirelson considered a renewal-reward process under the condition EX = 0,
where he proved that the large deviation function does not have any affine part. On the
other hand, an affine part of LDF has been observed in the counting process and some
physical models [15] in the range of a negative biaising field. In the following discussion,
we illustrate the difference between the conditions used in Tsirelson’s theorems [11] and in
these results [15].

In [11], Tsirelson considered the renewal process with the conditions:

EX = 0, EX2 = 1, Eτ = 1, E[ehX−ϵτ ] <∞ (3.1.3)
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Fig. 3.2: The SCGF G with an affine part in previous work [12].

for ∀h ∈ R and ∀ϵ > 0. He then proved

1

t
lnE[ehR(t)] = ηh +O

(
1

t

)
(3.1.4)

as t→ ∞, where ηh ∈ [0,∞) is uniquely determined by this relation:

E[ehX−ηhτ ] = 1. (3.1.5)

This Tsirelson’s theorem cannot be directly applied to our counting process because the
counting process does not satisfy EX = 0. When EX = 0 is not satisfied, the proof of
(3.1.5) needs an extra condition. Without loss of generality, we consider EX = 1 and we
can prove the following theorem:

Theorem 3.1.1. If EX = 1 and E[ehX−ϵτ ] < ∞ hold for ∀h > 0 and ∀ϵ > 0, there exists a
unique ηh that satisfies

E[ehX−ηhτ ] = 1

for ∀h > 0.

Proof. Defining ψ(h, η) = E[ehX−ητ ], we can prove (i) ψ(h, η) is strictly decreasing as η
increases with τ > 0 and ψ(h, η) is a continuous function, (ii) ψ(h, 0) > exp(h) > 1 and (iii)
ψ(h,∞) = 0. From these properties, the theorem 3.1.1 is derived. To prove (i), we use τ > 0.
To prove (ii), we use the Jensen’s inequality applied to ψ(h, η), EX = 1 and Eτ = 1.

Remark 3.1.2. Following the same argument as in [11], (3.1.4) can be proven from this
theorem 3.1.1. When h < 0, we cannot directly apply this method, as η that satisfies (3.1.5)
does not exist. Because if we consider negative h for ψ(−|h|, ·), the function ψ(−|h|, ·)
does not satisfy the condition (ii). The function ψ(−|h|, ·) has the condition ψ(−|h|, 0) >
exp(−|h|) < 1. Thus, we cannot apply this method to the range of h negative. There is
the possibility of taking the unique value of ηh within the range of ηh negative, however,
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Fig. 3.3: (a) Numerical calculation of E[e0.5−ηhτ ] within the range of h positive. h = 0.5 is
an example of the range of h positive. From this result, there is a scaling parameter ηh that
satisfies the condition of E[e0.5−ηhτ ] = 1, where ηh = 0.495 and we use Rayleigh distribution
(β = 1) for this simulation. (b)Numerical calculation of E[e−0.5−ηhτ ] within the range of h
negative. h = −0.5 is an example of the range of h negative. In contrast to left panel, there
is no scaling parameters ηh that satisfies the condition of E[e−0.5−ηhτ ] = 1. In the range of h
negative, the behavior of E[eh−ηhτ ] is broken in this simulation.

in equation (2.13) of [11], negative ηh is not satisfied the relation, which is derived by
reformulating 1

t
lnE[ehR(t)] = ηh +O(1

t
). It is given by

sup
∣∣−ηht+ lnE[ehR(t)]

∣∣ <∞. (3.1.6)

Thus, we cannot define uniqueness of ηh with the range of h negative. 1 We also show this
in Fig. 3.3 using the numerical simulation. Finally, we can see the relation of (2.13) of [11]
for h positive of our case.

suph∈[c,C]

∣∣−ηht+ lnE[ehR(t)]
∣∣ <∞, (3.1.7)

where 0 < c < C <∞. Following the procedure of (2.13) of [11], we can get the relation

1

t
lnE[ehNt ] = ηh +O(

1

t
) (h ≥ 0, ηh ≥ 0) (3.1.8)

as t → ∞. Here, we use R(t) = Nt, which is a counting process. In addition, we check
these condition for the CGF by using numerical simulation. The following figures refer to
the condition that the stochastic process satisfies (3.1.4).

1The convergence of (2.13) of [11] is calculated as

e−ηhtE[ehR(t)] → A as t → ∞,

where A is constant. Therefore, when ηh is negative, left-handside diverges as t → ∞
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3.2 Set-up

Let us consider again a random walk with arbitrary distributions of jump lengths and waiting
times. In this section, we use a simple example of the renewal-reward process, which is a
counting process Nt.

The well-known fields that exploit the renewal-reward process (and the theory related to
this process) are, among others, the actuarial science, where models describing an insurer’s
vulnerability to ruin are studied (known as ruin theory) [24], the queueing theory that studies
the queue length and waiting time in telecommunication, traffic- and industrial engineering
[25], and epidemiology using a renewal-reward process for estimating the basic quantity
of virus spreading [26, 27]. A number of studies have also reported various physical and
biological phenomena which are described by renewal-reward processes [17,28–32].

In this thesis, we study the fluctuations of the renewal-reward process R(t). Under mild
assumptions [23], the family of random variables (R(t)/t)t>0 satisfies a large deviation prin-
ciple

P
(
R(t)

t
≃ s

)
∼ e−tI(s), as t→ ∞, (3.2.1)

where the non zero function I is called the rate function. See [23] for more mathematical
formulation of the large deviation principle. In good cases [23], the rate function I is equal
to the Legendre transform of the sCGF

φ(h) = lim
t→∞

1

t
logE[ehR(t)], (3.2.2)

i.e., I(s) = sup{hs− φ(h)}. Here h ∈ R is called a biasing field.
An interesting point to keep in mind when studying renewal-reward processes is that

the process is in general not Markov and a strong time correlation in the dynamics can be
introduced by choosing a heavy-tailed probability density as the waiting time distribution.
One can intuitively expect that a single waiting time could become dominant in the dynam-
ics because of the heavy tail in the waiting time distribution, leading to an unusually high
occurrence of certain rare events (see, for example, a single-big jump principle [8, 33–35]).
Considering renewal-reward processes with heavy-tailed waiting-time distributions, the pres-
ence of a singular behaviour in the rate function and the CGF was established in [12,23,36]
related to these rare events. For example, let us consider the counting process R(t) = Nt

with waiting times distributed according to a Pareto’s law with a parameter m > 2:

p(t) : =

{
0 t ≤ 0
(m−1)
(1+t)m

t > 0
(3.2.3)

or equivalently by its cumulative distribution F

F (t) := P[τ ≤ t] =

{
0 t ≤ 0
1− 1

(1+t)m−1 t > 0.
(3.2.4)

Then the result of [23] implies that

I(x) = 0 (0 ≤ x ≤ µ)

φ(h) = 0 (h ≤ 0), (3.2.5)
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where µ = 1/E[τ ]. The fact that the rate function I takes the value zero below µ = 1/E[τ ],
indicates an unusually high occurrence of the rare events where Nt is below its average value
µ = 1/E[τ ]. In this thesis, we call this singularity an affine part and we focus on this specific
affine part obtained with R(t) = Nt.

Our goal in this thesis is to study the finite time asymptotic of CGF when the affine part
emerges. The finite time asymptotics of the CGF and of the rate function in the context of
renewal-reward processes have been studied by Tsirelson [11] under the assumption that the
rewards are centred, namely E[Xi] = 0, i ∈ N. Tsirelson theorem however cannot be applied
to the counting process Nt as it satisfies Xi = 1, i ∈ N. The affine part is indeed not observed
in the Tsirelson theorem [11]. To approach this problem, we rely on a classical result on the
sum of random variables with regularly varying tails that can be found in Feller’s book [37].
Applied to the special case of the distribution (3.2.3), the behaviour for t→ ∞ of P[Nt ≤ k]
is determined by

lim
t→∞

tm−1P[Nt ≤ k − 1] = k. (3.2.6)

for any k ≥ 1. Using this theorem, we study the asymptotics in time of the CGF. The strategy
is that we first expand the MGF of Nt as the infinite sum of P [Nt < k] (k = 1, 2, ...) and then
use this theorem in each term. Technically, the key in this step is to justify the fact that the
infinite sum and the large t limit can be exchanged. This leads to the asymptotic form of the
upper bound for the finite-time moments generating function (MGF) (Theorem 3.3.1 and
Theorem 3.3.2) for Pareto waiting time distribution with an integer exponent. In numerical
simulations we then test the validity of this theorem using Pareto distribution with a real
value exponent, inverse Rayleigh distribution and log-normal distribution, demonstrating
the extent of this theorem beyond what we study mathematically in this thesis.

The structure of this section is the following: In Section 3.3, we will state and prove our
results on the speed of convergence of the moments generating function (MGF). In Section
3.4, we will show how to prove a result providing uniform bounds that are used in the proof
of the main theorem. In Section 3.5.1, we will perform numerical simulations and study
if the theorem in Section 3.3 can be extended to the problems with different heavy-tailed
waiting-time distributions. In Section 3.5.2, we numerically study the rate function of Nt,
observe a general asymptotic form, and discuss the relation with the results in Section 3.3.
Finally in Section 3.6, we will conclude this section.

3.3 Results

Our goal is to study for h < 0 :

M(t, h) := E[ehNt ] =
∞∑
k=0

ehkP[Nt = k]. (3.3.1)

We observe that, since obviously 0 ≤ P[Nt = k] ≤ 1, the series is normally convergent for
any h < 0, as a function defined for t ∈ [0,∞[. Let

Sk = τ1 + . . .+ τk
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Since for any t ≥ 0, any k ∈ N\{0},

P[Nt = k] = P[Nt ≤ k]− P[Nt ≤ k − 1]

and any k ∈ N :

P[Nt ≤ k] = P[Sk+1 > t],

we obtain :

M(t, h) =
∞∑
k=1

(eh(k−1) − ehk)P[Sk > t].

Introducing z = eh, this may be rewritten :

M(t, h) =
1− z

z

∞∑
k=1

zkP[Sk > t]

The behaviour for t → ∞ of P [Sk ≥ t] when Sk is the sum of independent variables dis-
tributed with a regularly varying distribution may be found in Feller’s book [37] Chapter
VIII.9 p. 278. The Pareto distribution with m ≥ 3 enters this class and Feller’s result implies
that for any k ≥ 1 :

lim
t→∞

tm−1P[Sk > t] = k. (3.3.2)

Thus, if one is allowed to take the limit inside the above series, one gets the following

Theorem 3.3.1. Let (Nt)t≥0 the counting process with waiting times distributed according
to a Pareto’s law with an integer parameter m ≥ 3, then for any h < 0 :

lim
t→∞

tm−1M(t, h) =
1

1− eh
.

The proof of the theorem boils down to proving that this exchange is justified and using∑∞
k=1 kz

k = z
(1−z)2

for 0 ≤ z < 1. The justification of the exchange of the series and the

limit is guaranteed by (3.3.3) in the next theorem.

Theorem 3.3.2. Let (Nt)t≥0 the counting process with waiting times distributed according
to a Pareto’s law with an integer parameter m ≥ 3, then for any h < 0

∞∑
k=1

ehk sup
t∈[0,∞[

tm−1P[Sk > t] <∞. (3.3.3)

Moreover, for any m ≥ 3, there exist Cm > 0 and c̄ such that for any h < 0, and for any
d > c̄

e−h−1
:

M(t, h) ≤ 1

1− eh
(1− F (t)) + Cm

dm

(d+ t)m
α(d)eh

(1− α(d)eh)2
(3.3.4)

where α(d) = 1 + c̄
d
.

Remark Note that the first term in (3.3.4) is O( 1
tm−1 ) while the second term is O( 1

tm
).
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Proof. We introduce the notation Mk(t) = P[Nt = k] for k ∈ N. We note the two straight-
forward relations : for any k ≥ 1

M0(t) = 1− F (t)

Mk(t) =

∫ t

0

Mk−1(t− s)p(s)ds (3.3.5)

We use the telescopic identity that holds for any n ≥ 1

Mn(t) =M0(t) +
n∑

k=1

(Mk(t)−Mk−1(t)). (3.3.6)

which, together with Proposition 3.4.1 below implies that for any integer m ≥ 3 there exists
c̄ > 0 such that for any d > 1, any t ≥ 0 and for n ≥ 1:

P[Nt = n] =Mn(t) ≤M0(t) + nCm
dm

(d+ t)m

[
1 +

c̄

d

]n−1

(3.3.7)

and

P[Sn ≥ t] = P[Nt ≤ n− 1]

=
n−1∑
k=0

P[Nt = k]

≤ nM0(t) + n2Cm
dm

(d+ t)m

[
1 +

c̄

d

]n−1

. (3.3.8)

Thus for any h < 0, and any d > c̄
e−h−1

the series (3.3.3) converges and the bound
(3.3.4)holds.

Remarks
If m ≥ 3 is not an integer, it is easy to see that

P[Sk ≥ t] ≤ P[S̃k ≥ t]

where S̃k = τ̃1 + · · ·+ τ̃k and (τk)k is and i.i.d sequence such that

P[τ̃i > t] =
1

(1 + t)⌊m⌋−1

because we have that
P[τi > t] ≤ P[τ̃i > t].

Thus, using the same methods, we can conclude that

lim
t→∞

t⌊m⌋−1M(t, h) = 0

but not more than that. We expect however the theorem to be true also in the non-integer
case. (See Section 3.5.1 for the study based on numerical simulations.)
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3.4 Uniform Bounds

Proposition 3.4.1. For any integer m ≥ 3, there exists c̄ > 0 such that for any n ≥ 1,
d ≥ 1, and any t > 0 :

Mn(t)−Mn−1(t) ≤ Cm
dm

(d+ t)m

[
1 +

c̄

d

]n−1

. (3.4.1)

Proof. We first prove for the case n = 1 and then proceed by induction. First, M0(t) and
M1(t) are given by

M0(t) = 1− F (t) =
1

(1 + t)m−1

M1(t) =

∫ t

0

M0(s)p(t− s)ds

=

∫ t

0

1

(1 + s)m−1

(m− 1)ds

(1 + t− s)m
., (3.4.2)

In order to calculate this integral, we perform a partial-fraction decomposition by viewing
the denominator in the integral of (3.4.2) as a polynomial in s:

(3.4.3)
1

(1 + s)m−1(1 + t− s)m
=

m−1∑
k=1

ak(t)

(1 + s)k
+

m∑
k=1

bk(t)

(1 + t− s)k

where

ak(t) =
1

(m− 1− k)!
lim
s→−1

dm−1−k

dsm−1−k

(
1

(1 + t− s)m

)
, 1 ≤ k ≤ m− 1

bk(t) =
1

(m− k)!
lim

s→1+t

dm−k

dsm−k

(
1

(1 + s)m−1

)
, 1 ≤ k ≤ m. (3.4.4)

And thus :

ak(t) =
Ak(m)

(2 + t)2m−1−k

bk(t) =
Bk(m)

(2 + t)2m−1−k
.

where the Ak(m) and Bk(m) are combinatorial factors. Now with A′
k(m) = (m − 1)Ak(m)

and B′
k(m) = (m− 1)Bk(m) we have

M1(t) =
m−1∑
k=1

A′
k(m) + B′

k(m)

(2 + t)2m−k−1

∫ t

0

ds

(1 + s)k
+

m− 1

(2 + t)m−1

∫ t

0

ds

(1 + t− s)m
, (3.4.5)

since from (3.4.4) we see that Bm(m) = 1 and thus B′
m(m) = (m − 1). We bound the last

term in the following way :
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m− 1

(2 + t)m−1

∫ t

0

ds

(1 + t− s)m
=

1

(2 + t)m−1
(1− 1

(1 + t)m−1
)

≤ 1

(1 + t)m−1
=M0(t). (3.4.6)

It is easy to see that for k > 1, the remaining integrals are all bounded by 1. Thus we
have :

M1(t) ≤M0(t) +
m−1∑
k=2

A′
k(m) + B′

k(m)

(2 + t)2m−k−1
+
A′

1(m) + B′
1(m)

(2 + t)2m−2
log(1 + t) (3.4.7)

and because log(1 + t) ≤ (2 + t) and m ≥ 3 :

M1(t) ≤ M0(t) +
Cm

(2 + t)m

≤ M0(t) +
Cm

(1 + t)m

≤ M0(t) + Cm
dm

(d+ t)m
(3.4.8)

for some constant Cm depending on m and for any d ≥ 1.
Thus, we find the bound we were looking for :

M1(t)−M0(t) ≤ Cm
dm

(d+ t)m
. (3.4.9)

We now proceed to prove the claim of the proposition for general n > 1 by induction : we
see that

Mn(t)−Mn−1(t) =

∫ t

0

(Mn−1(s)−Mn−2(s))p(t− s) ds (3.4.10)

and we assume that for some c̄ > 0 :

Mn−1(t)−Mn−2(t) ≤ Cm
dm

(d+ t)m

[
1 +

c̄

d

]n−2

for any d ≥ 1 and any t ≥ 0. Then we conclude the proof of the proposition with the use of
the following Lemma.

Lemma 3.4.2. There exists c̄ > 0, such that for any d ≥ 1 and any t ≥ 0:∫ t

0

1

(d+ s)m
(m− 1)ds

(1 + t− s)m
≤
[
1 +

c̄

d

] 1

(d+ t)m
(3.4.11)

We give now the proof of Lemma 3.4.2.
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Proof. For d ≥ 1, t ≥ 0, let

Im(d, t) =

∫ t

0

1

(d+ s)m
(m− 1)ds

(1 + t− s)m
. (3.4.12)

We first perform partial fraction decomposition in the integrand of Im(d, t),

(3.4.13)

1

(d+ s)m
m− 1

(1 + t− s)m
=

(m− 1)

(1 + d+ t)m

[(
1

(d+ s)m
+

1

(1 + t− s)m

)
+

L1

(1 + d+ t)

(
1

(d+ s)m−1
+

1

(1 + t− s)m−1

)
+ · · ·

+
Lm−1

(1 + d+ t)m−1

(
1

(d+ s)
+

1

(1 + t− s)

)]
,

where Li (i = 1, 2, . . . ,m−1) are constants. Integrating these terms over the interval between
s = 0 and s = t, we then get

(3.4.14)

Im(d, t) =
(m− 1)

(1 + d+ t)m

[
1

m− 1

(
1

dm−1
+ 1− 1

(d+ t)m−1
− 1

(1 + t)m−1

)
+

L1

(1 + d+ t)

1

m− 2

(
1

dm−2
+ 1− 1

(d+ t)m−2
− 1

(1 + t)m−1

)
+ · · ·

+
Lm−1

(1 + d+ t)m−1

(
log

(
(d+ t)(1 + t)

d

))]
≤ 1

(d+ t)m

[
1 +

c̄

d

]
,

for some c̄ > 0. We have used the relation t > log(t) to derive the inequality in the second
line.

3.5 Numerical Study

3.5.1 Generality of Theorem 3.3.1

In this section, we numerically study the validity of Theorem 3.3.1 beyond its hypotheses.
We first test if our numerical simulations capture correctly Theorem 3.3.1 by using Pareto
distribution with an integer value exponent (with which Theorem 3.3.1 was proven). We
then numerically study the validity of this theorem for different waiting time distributions,
such as Pareto distribution with a real value exponent, inverse Rayleigh distribution and
lognormal distribution.

Using numerical simulations, we estimateM(t, h) for the Pareto distribution (with m = 3)
and divide it by M0(t) = 1/(1 + t)m−1. We plot M(t, h)/M0(t) as a function of t in Fig.3.4
together with 1/(1− eh) as horizontal dashed lines. This demonstrates the reliability of our
numerical simulations.
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Fig. 3.4: The numerical results of M(t, h)/M0(t) with the Pareto distribution (m = 3).
Dashed lines are 1/(1− eh).

Next we consider the Pareto distribution with a real value exponent (m = 3.5), inverse
Rayleigh distribution

pRay(t) : =

{
0 t ≤ 0
β
t3
e−

β

2t2 t > 0
(3.5.1)

with a parameter β and log-normal distribution

plog(t) : =

{
0 t ≤ 0

1√
2πσt

e−
(log(t)−µ)2

2σ2 t > 0
(3.5.2)

with parameters µ and σ. The corresponding cumulative distributions for the latter two
distributions are

FRay(t) := P[τ ≤ t] =

{
0 t ≤ 0

e−
β

2t2 t > 0.
(3.5.3)

and

Flog(t) := P[τ ≤ t] =

{
0 t ≤ 0
1
2
erfc

[
− log(t)−µ√

2σ

]
t > 0,

(3.5.4)

respectively.
We perform numerical simulations with these waiting time distributions and plot in Fig.3.5

the finite-time CGF of the counting process Nt, defined as

φt(h) :=
1

t
logM(t, h). (3.5.5)
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Fig. 3.5: Numerical results of the finite-time CGF ((1/t) logE[ehNt ]) of the counting process
with Pareto distribution with m = 3.5 (a), inverse Rayleigh distribution with β = 1 (b) and
log-normal waiting-time distribution with µ = 0 and σ = 1.5 (c). We observe the emergence
of the affine part when h is negative.
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Fig. 3.6: M(t, h)/M0(t) (filled circles) together with 1/(1 − eh) (dashed lines) for Pareto
distribution with m = 3.5 (a), inverse Rayleigh distribution with β = 1 (b) and log-normal
waiting-time distribution with µ = 0 and σ = 1.5 (c).

The figure shows the emergence of the affine part for the negative h [12, 23, 36], indicating
that M(t, h) decreases sub-exponentially. Theorem 3.3.2 states that, when the waiting time
distribution is the Pareto distribution with an integer exponent m, this sub-exponential
decrease is proportional withM0(t) (whereM0(t) = 1−F (t)) with a coefficient 1/(1−eh). To
study if the same statement is satisfied with the various waiting-time distributions introduced
above, we then plot M(t, h)/M0(t) (where M0(t) = 1 − F (t)) in Fig.3.6 as a function of
t. In the figure, M(t, h)/M0(t) seems to converge to 1/(1 − eh) for Pareto distribution
(m = 3.5) and inverse Rayleigh distribution, while it converges to a value close to 1/(1− eh)
for lognormal distribution. We note that the Pareto and inverse Rayleigh distribution are
both regularly varying at infinity while the log-normal is not. It is an interesting future
perspective to quantitatively understand these convergences and prove the corresponding
Theorem 3.3.1 for these waiting time distributions.

3.5.2 Study of the Rate Function

In this section, we numerically study the asymptotic behaviour of the finite-time rate function
it(x)

it(x) := −1

t
logP

(
Nt

t
≃ x

)
. (3.5.6)
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We first plot it(x)−minx it(x) for several t with different waiting-time distributions (intro-
duced in the previous sub-section) in Fig. 3.7. The figure indicates the emergence of the
affine part, which manifests anomalously large probability of rare fluctuations where Nt/t
takes smaller values than the expectation. To study the finite-time asymptotic, we then
plot log P[Nt < xt] (for a fixed x) as a function of t in Fig. 3.8. We observe the asymptotic
behaviour of log P[Nt < xt] as

logP[Nt < xt] ∼ a logM0(t) + log(t) + b (3.5.7)

with constants a, b (that can potentially depend on x). For Pareto and the inverse Rayleigh
waiting time distributions, a seems to be 1, while a is different from 1 for the log-normal
waiting-time distribution.
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Fig. 3.7: The finite time rate function it(x) −minx it(x) for several t with different waiting
time distributions: (a) Pareto distribution with m = 3, (b) Pareto distribution with m = 3.5,
(c), inverse Rayleigh distribution with β = 1 and (d) the log-normal waiting-time distribution
with µ = 0 and σ = 1.5. In all panels, the affine part emerges as t increases.

Mathematically justifying this asymptotic expression is an open problem. For example,
we can immediately derive a lower bound for P[Nt < xt] for any x > 0 as

P[Nt < xt] ≥ P[Nt = 0] = P[τ1 > t] =M0(t), (3.5.8)

which is consistent with the observation. For the upper bound it is natural to use the relation

P[Nt < xt] = P[S⌊xt⌋ > t] (3.5.9)
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and the bound (3.3.8) with replacing n by ⌊xt⌋. This leads to

P[Sn ≥ t] ≤ nM0(t) + n2Cm
dm

(d+ t)m

[
1 +

c̄

d

]n−1

(3.5.10)

valid for any d ≥ 1. Unfortunately the bound provided by this inequality (and in particular
its second term) is not strong enough to derive a meaningful asymptotic expression. Indeed,
it is easy to see that when t → ∞ the second term diverges even if one takes d → ∞ first.
Interestingly, the logarithm of the first term yields

log(⌊xt⌋M0(t)) ∼ logM0(t) + log(xt) (3.5.11)

as t → ∞, which is coincidentally the same as the observed expression (3.5.7) for Pareto
and inverse Rayleigh waiting time distributions. This implies that refining the bound (3.3.8)
could be the key to derive (3.5.7) at least for these waiting time distributions. Pursuing this
direction is out of scope in the current manuscript but an interesting future perspective.
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Fig. 3.8: log P[Nt < xt] for several waiting time distributions: (a) Pareto distribution with
m = 3, (b) Pareto distribution with m = 3.5, (c), inverse Rayleigh distribution with β = 1
and (d) the log-normal waiting-time distribution with µ = 0 and σ = 1.5. The lower
bound logM0(t) and a fitting function a logM0(t) + log(t) + b (with fitting parameters a, b)
are also plotted. These fitting parameters are determined as a = 1.01, b = 0.92 for (a),
a = 1.00, b = 0.43 for (b), a = 1.00, b = 2.00 for (c) and a = 0.89, b = 2.51 for (d).
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3.6 Conclusion

In this section, we studied the finite-time asymptotic of the MGF in a counting process Nt

with Pareto distributions (3.2.3). To this end, we applied the result (3.3.2) and we proved an
explicit expression of the bounds for the finite-time MGF (Theorem 3.3.2) using an expansion
approach. The method to prove these expressions could be applied to more general cases,
as the validity of the relation (3.3.2) is not restricted to Pareto distribution. Also we expect
that the bound of Theorem 3.3.2 may be extended beyond the case where one can perform
a partial fraction decomposition to estimate the integrals. The same affine part has been
observed in heat currents with the inverse Rayleigh distribution [12] and in the counting
process with lognormal distribution (Fig.3.5). Similar finite-time asymptotics for the MGF
are anticipated as numerically demonstrated in Section 3.5.1. Studying how the methods of
this section can be generalised in these cases would be an interesting future perspective.

In physics, there have been tremendous efforts to understand and characterise singu-
larities appearing in large deviation functions (rate functions and CGFs). In equilibrium
statistical physics, these singularities correspond to phase transitions because the large de-
viation functions are the thermodynamic functions ( [21, 38–41] for instance). Studying
large deviation functions of time-averaged quantities in non-equilibrium systems have at-
tracted a strong attention of statistical physicists since the discovery of fluctuation theorem
in 1993 [40,42–45]. The singularities of the large deviation functions are related to dynami-
cal phase transitions and are studied in lattice gas models [46–52], high-dimensional chaotic
dynamics [53–55], glass formers [14, 56–61], diffusive hydrodynamic equations [62–64] and
active matters [65–68]. In these studies, the dynamics are defined using Markov processes
(or deterministic processes), where the CGF and the rate function are introduced in the
large time limit. These functions are analytic, but taking another limit (usually the large
system size limit), a singularity emerges. See [69] for an illustrative example. In our case,
the CGF and the rate function (defined in the large time limit) already include a singularity
without taking this second limit due to the heavy tailed waiting time distributions. Studying
how this difference can alter the well-studied dynamical phase transitions in physics context
would be an interesting perspective, in the similar way that heat conductions in aerogels
were studied using renewal-reward processes [12].

3.A Perturbative Construction of MGF

In the main section, we’ve already derived the finite time asymptotic form of MGF with
Pareto-distribution. Here, we show another perturbative method to derive the expression of
finite time asymptotic form of MGF by using the renewal equation. Recalling (2.1.46), the
MGF can be written as

M(t, h) =

∫ ∞

0

E[ehNt | X1 = s]p(s) =

∫ t

0

E[ehNt | X1 = s]p(s) +

∫ ∞

t

E[ehNt | X1 = s]p(s)

= eh
∫ t

0

E[ehNt−s ]p(s) +

∫ ∞

t

p(s)

M(t, ϵ) = [1− F (t)] + ϵ

∫ t

0

M(t− s, ϵ)p(s) (3.A.1)
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with ϵ = eh. Thus, we see that the MGF M(t, h) satisfies a renewal equation. In order to
find a solution to this renewal equation, we try to expand M(t, ϵ) as a formal power series
in ϵ :

M(t, ϵ) =
∞∑
n=0

ϵnMn(t). (3.A.2)

We will determine these coefficients Mn(t), n ∈ N by substituting this formal power series
for M(t, ϵ) in (3.A.1), leading to the following theorem.

Proposition 3.A.1. Let F an arbitrary cumulative distribution function and let (Mn)n∈N a
sequence of functions defined inductively by

M0(t) = 1− F (t), t ≥ 0

and for n ≥ 1

Mn(t) =

∫ t

0

Mn−1(t− s)p(s), (3.A.3)

If 0 ≤ ϵ < 1, then the formal power series (3.A.2) is normally convergent, namely :

∞∑
n=0

ϵn sup
t∈[0,∞)

|Mn(t)|<∞. (3.A.4)

Moreover the power series solves the equation (3.A.1).

Proof. We are going to prove inductively that for any n ≥ 0,

sup
t∈[0,∞)

|Mn(t)|≤ 1.

This implies that (3.A.4) holds. First, we note that by definition : supt∈[0,∞)|M0(t)|≤ 1.
Assume next that the claim is true for a given n ≥ 1, then by (3.A.3) we see that for any
t ≥ 0,

Mn+1(t) =

∫ t

0

Mn(t− s)p(s) ≤
∫ t

0

p(s) = F (t) ≤ 1 (3.A.5)

The proof of the fact that the power series (3.A.2) solves the renewal equation follows by
inserting it in (3.A.1) and identifying coefficients of equal power in ϵ and using (3.A.3).

This approach gives the same result, which is Proposition 3.4.1. By considering the case
of the negative biasing field for the renewal equation, we can expand the MGF within the
specific range.



Chapter 4

Application of The Variational
Principle for SCGF with Affine Parts

In this chapter, we re-visit the affine part in the CGF [12] by using a variational principle and
a numerical simulation technique (population dynamics algorithm [14]) developed in large
deviation theory. These techniques have been applied to study a singularity appearing in the
LDF in, among others, kinetically constrained models (KCM) [13] and active matters [14].
These models are defined using Markov processes, because of which the LDF of time-averaged
quantities does not have any singularity whenever the system size (not the averaging time)
is finite. Our focus is on how the same methodology can be extended to our non-Markovian
problem to derive the affine part.

4.1 Background

4.1.1 Model

We first illustrate our model. We confine a tracer particle in a one-dimensional box that
has two different temperatures at both ends. The confined tracer has a random speed v
distributed according to the following distribution:

qβ−1,1(v) = β−1,1ve
−β−1,1

v2

2 1l(v)>0 (4.1.1)

where β−1,1 = 1/T−1,1 is the inverse temperature of the left- or right-wall where the collision
takes place. We introduce a sign variable σk that takes a value either 1 or −1 depending on
the direction to which the particle moves between k-th and (k + 1)-th collisions. We denote
the state space of this variable by E ≡ {−1,+1}. The initial position and velocity of the
particle are denoted by (x0,v0), from which we can derive σ0 = v0/|v0|, σk = (−1)kσ0. We
also define the velocity vk of the particle between k-th and (k + 1)-th collisions. These are
drawn randomly from one of the Rayleigh distributions (4.1.1) depending on the previous
hot wall with which the particle collides. Note that vk and σk have the same sign each events.
We denote by Sk the time at which (k + 1)-th collision occurs. Introducing σ̂k = 1

2
(σk + 1),

the time of the first collision with a wall is written as

S0 = S0(x0, v0) :=
σ̂0 − x0
v0

> 0. (4.1.2)

71
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Note that k-th inter-arrival time is given as

τk :=
σk
vk
, (4.1.3)

which is distributed according to the inverse Rayleigh waiting time density:

p(τk|σk−1) =
βσk−1

τ 3
exp

(
−
βσk−1

2τ 2

)
1l(τ)>0. (4.1.4)

The arrival time Sk is then written as

Sk := S0 + τ1 + τ2 + · · ·+ τk, k ≥ 1. (4.1.5)

The energy exchanged between the two walls during a time interval [0, t] is given by

J [0, t] :=
1

2

∑
k≥1:Sk≤t

v2kσk. (4.1.6)

We call J the energy current. Then, we can calculate the expected value of J in the large
time limit. It is given by

(4.1.7)lim
t →∞

E[J(t)]
t

= κ

(
1

β+
− 1

β−

)
,

where κ is the conductivity

κ−1 =

(
πβ−
2

) 1
2

+

(
πβ+
2

) 1
2

. (4.1.8)

We will show more details of the calculation around (5.3.17) in chapter 5. We also calculate
the convergence of the number of hitting times Nt. It is given by

(4.1.9)lim
t →∞

E[Nt]

t
= 2κ

as with the similar derivation of the first moment of J .

4.1.2 Properties of a Path Probability

We next introduce a path probability of this model [12]. We consider a dynamics (or a
path) that ends at time t. This path is specified by the number of collisions N (between the
particle and the walls) and a sequence of inter-arrival times (τi)

N
i=1. The probability density

of this path (thus the path probability) is then given as

P(Nt = N, (τi)
N
i=1) ∝

(
N∏
i=1

p(τi|σi−1)

)
Θ(SN − t)Θ (t− SN−1) , (4.1.10)

where Θ(x) is a Heaviside step function.
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Below we numerically demonstrate an interesting property related to this path probability.
When t is large, one can expect an approximated form of (4.1.10) as

P(Nt = N, (τi)
N
i=1) ≃

(
N∏
i=1

p(τi|σi−1)

)
δ(SN − t) (4.1.11)

with the Dirac delta function δ(x). The probability of observing N jumps for a fixed target
time t is then derived as

P(N |t) ∝
∫

(dτ)Ni=1P(N, (τi)Ni=1). (4.1.12)

Meanwhile, the probability of the final time t for a fixed number of jumps N is derived as

P(t|N) ∝
∫

(dτ)Ni=1

(
N∏
i=1

p(τi|σi−1)

)
δ(SN − t) (4.1.13)

by definition. From (4.1.11), (4.1.12) and (4.1.13), we thus find

P(N |t) ≃ P(t|N). (4.1.14)

In Fig.4.1, we numerically demonstrate this relation.

Fig. 4.1: A numerical comparison between P(N |T ) and P(T |N) from the numerical simula-
tions.

4.1.3 A Bound Function of CGF

Let us denote a path of a system by C and its path probability by P[C]. We denote a time
cumulative quantity of this system by A[C] (e.g., J in the heat-conduction model introduced
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in the previous sub-section). We introduce the analogue for the canonical ensemble in this
dynamical problem as

Ph[C] ∝ P[C]e−hA[C], (4.1.15)

where h is a field playing a role of an “inverse temperature”. The CGF of A[C] is given as
the “free energy” of this canonical ensemble:

ϕ(h, t) = logE[e−hA[C]] (4.1.16)

Note that it is not clear a priori, if this canonical ensemble can be generated in a numerical
simulation, where only “physical” rules (e.g., the temperatures of the walls in the heat-
conduction model) of the dynamics are modified [70]

To further understand this problem, let us consider a control model that can be defined
by modifying only “physical” rules. The path probability of this control model is denoted
by Pcon. We then have [71,72]

ϕ(h, t) = log

∫
e−hA[C]P[C]dC

= log

∫
e−hA[C]Pcon[C] P[C]

Pcon[C]
dC

ϕ(h, t) ≥ −hEcon[A]−D(Pcon||P) (4.1.17)

with

D(Pcon||P) = Econ

[
log

Pcon(t, C)
P(t, C)

dC
]
, (4.1.18)

where Econ[ · ] denotes the expected value in the controlled system. Here, we used Jensen’s
inequality. Note that D(Pcon||P) is a Kullback-Leibler (KL) divergence, which is non-negative
and becomes 0 only when Pcon = P. The “physical” control system produces the ensemble of
the canonical distribution (4.1.15) if and only if this inequality becomes an equality. Indeed,
the right-hand side of (4.1.17) can be rewritten as [73]

−hEcon[A]−D(Pcon||P) = ϕ(h, t)−D(Pcon||Ph) (4.1.19)

using (4.1.15). Therefore, the equality is possible only when Pcon = Ph. It is straightforward
to construct such a control process in the large time limit for a stochastic differential equation
(See Appendix 4.A).

It is not always true that a control model for a given constraint of “physical” rules is
equivalent to a canonical ensemble: This inequality provides us a tool to investigate how far
the control model is to the canonical ensemble. In Section 4.2, by using this method, we
study approximations of the canonical ensemble for the heat-conduction system. We will
derive, as a result, the affine part in the CGF [12].

4.1.4 Population Dynamics Algorithm to Compute limt→∞ ϕ(h, t)/t

To check how close the right-hand side of the inequality (4.1.17) is to the left-hand side,
we use a population dynamics algorithm to numerically evaluate limt→∞ ϕ(h, t)/t [14]. We
introduce the details of the method below.
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1. Generate the Nc initial conditions, for example, drawn from the stationary state of the
unbiased (h = 0) dynamics.

2. Simulate the Nc dynamics for the time interval t. During these simulations, repeat the
following procedure every small time step ∆t:

(2-a) (Let us assume that we are at time t′.) For each copy of the system, calculate

sa = exp {h[A(t′)− A(t′ −∆t)]} , (4.1.20)

where the time cumulative quantity of interest is denoted A(t) (equivalent to A[C]
in the previous subsection).

(2-b) For each copy, we calculate an integer na defined as

na =

⌊
sa∑
b sb

Nc + ξ

⌋
, (4.1.21)

where ξ is a random number uniformly distributed on [0, 1]. We calculate and
store the quantity Sm =

∑
b sb, where m represents the number of the repetition

(of this step 2) that has been performed.

(2-c) Multiply or eliminate each trajectory a so that it appears na times in the new
population. (For example, if na = 0 then trajectory a is deleted. If na = 6 then
we retain trajectory a and we introduce 5 new copies of that trajectory.) This
strategy extracts the rare events in this simulation.

(2-d) Eliminate or multiply trajectories within the population, chosen randomly and
uniformly, so that the total number of surviving trajectories is Nc.

For this population dynamics algorithm, we can calculate CGF as

lim
t̃→∞

ϕ(h, t̃)

t̃
∼ 1

t

∑
m

log
Sm

Nc

. (4.1.22)

This method has been applied to several physical systems, for instance, dynamical phase
transitions in kinetically constrained models [13, 74] and current fluctuations of a simple
lattice gas model between the two reservoirs [75].

4.2 Bound Functions for the Heat-conduction System

4.2.1 A Control System with Modifying Wall Temperatures

We consider the one-particle heat-conduction system (as defined in the previous section),
but with different wall temperatures βcon

−1 , β
con
1 , as our control system. The waiting time

density pcon(τk|σk−1) in this system is written as (4.1.4) with βσ replaced by βcon
σ . The path

probability Pcon is then

Pcon(Nt = N, (τi)
N
i=1) ∝

(
N∏
i=1

pcon(τi|σi−1)

)
Θ(SN − t)Θ (t− SN−1)) . (4.2.1)
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From (4.1.17), the lower bound for the CGF of the heat current J is given by

ϕ(h, t) ≥ −hEcon[J ]−D(Pcon∥P). (4.2.2)

Using (4.1.6), (4.1.10) and (4.2.1), the right-hand side of this inequality is evaluated as

RHS of (4.2.2)

= −Econ

[
h

2

N∑
i=1

σi
τ 2i

+
N∑
i=1

log
pcon(τi|σi−1)

p(τi|σi−1)

]

= −Econ

 N∑
i=1

h
2

σi
τ 2i

+ log

βcon
σi−1

τ3i
exp

(
−

βcon
σi−1

2τ2i

)
βσi−1

τ3i
exp

(
−βσi−1

2τ2i

)


= −Econ

[
N∑
i=1

[
hσi − βcon

σi−1
+ βσi−1

2τ 2i
+ log

βcon
σi−1

βσi−1

]]

≥ −Econ

[
N

2

] [(
−h− βcon

1 + β1
βcon
1

+
h− βcon

−1 + β−1

βcon
−1

)
+

(
log

βcon
1

β1
+ log

βcon
−1

β−1

)]
,

(4.2.3)

where we use Wald’s identity (lemma 2.1.3) to derive the last line. Finally, dividing both
sides by t, taking the large t limit and using (4.1.9), we obtain

lim
t→∞

ϕ(h, t)

t
≥ −κconL(βcon

1 , βcon
−1 ), (4.2.4)

where

L(βcon
1 , βcon

−1 ) =

[
−h− βcon

1 + β1
βcon
1

+
h− βcon

−1 + β−1

βcon
−1

+ log
βcon
1 βcon

−1

β1β−1

]
(4.2.5)

and κcon is the conductivity with the inverse controlled temperatures. Namely, it is given by

(κcon)−1 =

(
πβcon

−1

2

) 1
2

+

(
πβcon

1

2

) 1
2

. (4.2.6)

Note that, as shown in [15], the fluctuation relation holds for the CGF ϕ(h): ϕ(h) = ϕ(β1 −
β−1 − h). A similar property is satisfied in the right-hand side of (4.2.4). Indeed, denoting
the right-hand side of (4.2.4) by f(h, βcon

1 , βcon
−1 ), we obtain f(h, βcon

1 , βcon
−1 )= f(β1 − β−1 −

h, βcon
−1 , β

con
1 ).

We numerically maximise the right-hand side of this inequality over βcon
1 and βcon

−1 and
plot it in Fig.4.2(a) as an orange line. We can clearly see that the affine part does not take
place in this bound.

4.2.2 A Control System with Nt = 0

In order to get the affine part, we take into the account an extremely slow jump event in our
system. The probability of this slow jump is calculated as

P(τ1 > t) = 1− e−
β

2t2 , (4.2.7)
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Fig. 4.2: (a) Numerical demonstration of the bound (4.2.4). We numerically optimize the
control inverse temperatures βcon

± and plot the corresponding bound as an orange line. We
compare this bound with the results obtained from the population dynamics algorithm. Nc

is the number of copies used in the algorithm (the algorithm produces the correct ϕ(h) in
the large Nc limit.) We can see that the bound is close to the correct value for h > 0.
The inverse temperatures are set to β1 = 1, β−1 = 2. See Fig.4.4(a) as a comparison. (b)
The estimator of limt→∞ ϕ(h, t)/t in the population dynamics algorithm as a function of Nc.
In the population dynamics algorithm, the estimator of limt→∞ ϕ(h, t)/t converges to the
correct result as Nc increases following the asymptotic form A/Nc+B. We used this scaling
to infer limt→∞ ϕ(h, t)/t for h = 0.7, 0.8, 0.9 where large values of Nc are required for the
convergence. For example ϕ(h = 0.9) has an asymptotic form A/Nc+B with A = −1037.587,
B = 0.893 (blue line in the panel (b)), from which we estimate ϕ(h = 0.9) = 0.893.
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which means that the confined particle does not reach to the wall. The corresponding path
probability is

Pcon = δNt,0, (4.2.8)

as the counting process is always Nt = 0. According to the relation (4.2.2), we get

lim
t→∞

ϕ(h, t)

t
≥ lim

t→∞
{−hEcon[J ]

t
− 1

t
D(P con∥P )}

≥ − lim
t→∞

1

t
Econ

log 1(
1− e−

β

2t2

)
 = 0, (4.2.9)

where Econ[J ] = 0 because of no energy exchange. This bound proves the presence of the
affine part.

4.2.3 Taking Hydrodynamic Limit

In [15], the CGF was studied in the hydrodynamic limit. Taking the same limit, we study
the bound (4.2.4) in this subsection. We first express the inverse temperatures β1, β−1 as
1/β1(τ, T ) = (T + τ/2), 1/β−1(τ, T ) = (T − τ/2). In the similar manner, we define the
controlled inverse temperatures βcon

1 , βcon
−1 as

1

βcon
1

= T +∆T1

1

βcon
−1

= T +∆T−1. (4.2.10)

We next introduce a scaling parameter ϵ, by which we scale τ → ϵτ and h → ϵh, ∆T±1 →
ϵ∆T±1. We then expand the right-hand side of (4.2.4) up to the second-order by ϵ.

lim
t→∞

ϕ(ϵh, t)

t
≥ −κcon(ϵ)L(ϵ)

= −
(
κcon(0) + ϵ

∂κcon(ϵ)

∂ϵ

∣∣∣∣
ϵ→0

+
ϵ2

2

∂2κcon(ϵ)

∂ϵ2

∣∣∣∣
ϵ→0

+O(ϵ3)

)
×
(
L(0) + ϵ

∂L(ϵ)

∂ϵ

∣∣∣∣
ϵ→0

+
ϵ2

2

∂2L(ϵ)

∂ϵ2

∣∣∣∣
ϵ→0

+O(ϵ3)

)
≃ −ϵ

2

2
κcon(0)

∂2L(ϵ)

∂ϵ2

∣∣∣∣
ϵ→0

, (4.2.11)

where we use ∂κcon(0)
∂ϵ

,L(0),∂L(0)
∂ϵ

are 0, and

∂2L(ϵ)

∂ϵ2

∣∣∣∣
ϵ→0

= 2h[∆T−1 −∆T1]−
τ∆T1
T 2

+
τ∆T−1

T 2
+

τ 2

2T 2
+

∆T 2
1 +∆T 2

−1

T 2
. (4.2.12)

To identify the optimal bound, we look for ∆T±1 that maximise this right-hand side:

∂

∂∆T1

∂2L(ϵ)

∂ϵ2

∣∣∣∣
ϵ→0

= −2h− τ

T 2
+

2∆T1
T 2

= 0

→ ∆T1 =
τ

2
+ hT 2 (4.2.13)
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Fig. 4.3: The estimator of limt→∞ ϕ(ϵh, t)/(ϵ2t) obtained from the population dynamics
method is plotted as a function of h for several values of Nc. In the same figure, we also plot
the right-hand side of (4.2.17) as a blue line. We observe a convergence of the estimator to
the blue line as Nc increases. We set τ = 1, T = 1, and ϵ = 1.

∂

∂∆T−1

∂2L(ϵ)

∂ϵ2

∣∣∣∣
ϵ→0

= 2h+
τ

T 2
+

2∆T−1

T 2
= 0

→ ∆T−1 = −τ
2
− hT 2 (4.2.14)

The optimized temperatures 1/β∗,con
±1 are then obtained as

1

β∗,con
±1

=
1

β±1

± hT 2. (4.2.15)

Finally, dividing ϕ(ϵh, t)/t by ϵ2 , we arrive at

lim
ϵ→0

lim
t→∞

ϕ(ϵh, t)

ϵ2t
≥ κhτ + κh2T 2. (4.2.16)

Summarising the two bounds obtained in this and the previous subsections, we have

lim
ϵ→0

lim
t→∞

ϕ(ϵh, t)

ϵ2t
≥

{
κhτ + κh2T 2 (h > 0, h < − τ

T 2 )

0 (− τ
T 2 ≤ h ≤ 0)

(4.2.17)

when the hydrodynamic limit is taken. The equality in this equation corresponds to the
previously obtained result in [15], indicating that this inequality is saturated. In Fig.4.3, we
plot this right-hand side as a blue line. In Appendix 4.B, we derive another bound functions
without taking hydrodynamic limit and compare numerically them with (4.2.17).

4.3 Numerical Study

In this section, we numerically compute the left-hand side of the bound, i.e., limt→∞ ϕ(h, t)/t,
by using the population dynamics algorithm, and compare it with the bounds we have
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obtained in the previous section. In the population dynamics algorithm, the systematic
errors of the algorithm exist due to the finite-size effect of the number of copies Nc. To
mitigate these errors, we perform a finite-size scaling following this article [14], where the
systematic errors are shown to be proportional with 1/Nc. Using this scaling, we extrapolate
the result in Nc → ∞ from the finite Nc simulations.

In Fig.4.2(b), we plot the results of the population dynamics as a function of Nc for
h = 0.9, and fit a function A/Nc + B to these results. The obtained coefficient B is our
estimator of limt→∞ ϕ(0.9, t)/t in the large Nc limit. In Fig.4.2(a), the results obtained in
this way and the results with several finite Nc are plotted as a function of h. First of all, we
observe that the population dynamics algorithm can perfectly capture the affine part. Next,
the optimized bound (4.2.4) are almost saturated for h > 0 as it is close to the results of
the population dynamics with Nc → ∞. Note that this optimized bound cannot capture the
affine part.

Finally, we study the formula (4.2.17) obtained in the hydrodynamic limit using the
population dynamics method. In Fig.4.3, we plot the estimator of limt→∞ ϕ(ϵh, t)/(ϵ2t) as a
function of h for several values of the number of copies Nc. In the same figure, we also plot
the right-hand side of (4.2.17) as a blue line. Even though ϵ is set to a relatively large value
(ϵ = 1), we can see that the results of the population dynamics method converge to the blue
line as Nc increases, demonstrating that the inequality (4.2.17) is indeed saturated. Our two
control systems (4.2.1) and (4.2.8) fully capture the CGF containing the affine part in the
hydrodynamic limit.

4.A Optimal Control System in a Stochastic Differen-

tial Equation

In this Appendix, we show an example of an optimal control system in a stochastic differential
equation. Let us consider

dxt = v(xt)dt+
√
2dWt, (4.A.1)

where xt is a d-dimensional vector, Wt is a d-dimensional standard Brownian motion and
v(x) is a vector field representing deterministic law of evolution. We are interested in a
quantity a = a(x), and its time cumulative value

A =

∫ t

0

dta(xt) (4.A.2)

and its CGF ϕ(h, t). Using the operator method, the SCGF, defined as limt→∞ ϕ(h, t)/t, is
obtained as the largest eigenvalue of the following eigenproglem

WhP = ψ(h)P, (4.A.3)

where ψ(h) and P are the eigenvalue and the eigenvector, and the operator Wh is defined as

WhP = ∇2P−∇ · (vP)− haP. (4.A.4)

By replacing v with (v −∇V) for (4.A.1) where V is a control-potential, we obtain

dxt = [v(xt)−∇V(xt)]dt+
√
2dWt. (4.A.5)



4.B. ANALYTICAL EXPRESSIONS FOR THE LOWER BOUND OF ϕ(H,T ) 81

Recalling the inequality for CGF (4.1.17), a bound function for limt→∞ ϕ(h, t)/t is given by

lim
t→∞

1

t
ϕ(h, t) ≥ lim

t→∞

[
−h
t
Econ[A]−

1

t
D(Pcon∥P)

]
. (4.A.6)

Finding an optimal control potential that maximises the right-hand side of this bound is
equivalent to solving the eigenproblem (4.A.3), because the optimal control potential can be
expressed as V = −2 logF where F is the eigenvector associated with the largest eigenvalue
of the Hermitian conjugate of Wh. The derivation of this claim can be found, for example,
in Appendix A of [73].

4.B Analytical Expressions for the Lower Bound of

ϕ(h, t)

In this appendix, we derive two analytical expressions of the lower bound of ϕ(h, t) by using
two different control temperatures in the right-hand side of (4.2.4).

First, we substitutes the optimal temperatures β∗,con(T, τ ) given as (4.2.15) (obtained in
the hydrodynamic limit) into (4.2.4). We obtain

lim
t→∞

ϕ(h, t)

t
≥ Σ1(h, τ ), (4.B.1)

where Σ1(h, τ ) is defined as

Σ1(h, τ ) = −
(√

π

2(T + τ
2
+ hT 2)

+

√
π

2(T − τ
2
− hT 2)

)−1

×

(
−2h[hT 2 + τ ] +

hT 2

T + τ
2

− hT 2

T − τ
2

+ log

(
T + τ

2

) (
T − τ

2

)(
T + τ

2
+ hT 2

) (
T − τ

2
− hT 2

)) .
(4.B.2)

Note that this bound is not optimal as the hydrodynamic limit is not taken.

Next, we consider the following temperatures

1

β∗∗,con
1

=
1

β1
+

h

β1β−1

1

β∗∗,con
−1

=
1

β−1

− h

β1β−1

, (4.B.3)

that keep even symmetry. Substituting these temperatures into (4.2.4), we obtain

lim
t→∞

ϕ(h, t)

t
≥ Σ2(h, τ ), (4.B.4)
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2, Σ2(ϵh, ϵτ )/ϵ
2 and the optimal bound (4.2.17) under the hydrodynamic limit.

We set ϵ = 0.01, T = 0.75 and τ = 0.5.

where Σ2(h, τ ) is defined as

Σ2(h, τ ) = −

√ π

2(T + τ
2
+ h

(T+ τ
2 )(T− τ

2 )
)
+

√
π

2(T − τ
2
− h

(T+ τ
2 )(T− τ

2 )
)

−1

×

(
−2h[

h(
T + τ

2

) (
T − τ

2

) + τ ] +

h

(T+ τ
2 )(T− τ

2 )

T + τ
2

−
h

(T+ τ
2 )(T− τ

2 )

T − τ
2

+ log

(
T + τ

2

) (
T − τ

2

)(
T + τ

2
+ h

(T+ τ
2 )(T− τ

2 )

)(
T − τ

2
− h

(T+ τ
2 )(T− τ

2 )

)). (4.B.5)

We plot these two functions Σ1(h, τ ) and Σ2(h, τ ) as a function of h in Fig.4.4(a). We
also compare these two functions under the the hydrodynamic limit: We plot in Fig.4.4(b)
Σ1(ϵh, ϵτ )/ϵ

2 and Σ2(ϵh, ϵτ )/ϵ
2 as a function of h together with the right-hand side of (4.2.17)

(which is the optimal bound in the hydrodynamic limit). We observe that these two bounds
are almost optimal in this regime except the affine part.



Chapter 5

Analysis of Anomalous Fluctuations
of Renewal-Reward Processes with
Heavy-tailed Distributions

In this chapter, we discuss anomalous fluctuations with memory effects in a renewal-reward
process instead of focusing on the probability of rare events. A renewal-reward process, a
generalisation of continuous time Markov processes, is one of the simplest stochastic processes
that can describe random sequences with memory effects [16, 76, 77]. In contrast to its the
Markov counterpart, in renewal-reward processes, the waiting time to move from one state
to the next one can be distributed by a non-exponential function. The process can thus
describe a broad spectrum of phenomena in physics [78] and other fields, including a melt
up of the stock market [4, 5] and a super spreader in epidemics [6, 7], where memory effects
are known to be important.

When the waiting time distribution has a power law, the dynamics show a slow con-
vergence to its stationary states due to its heavy tail. For example, the probability that
the state of the system always stays in the initial state during the dynamics remains non-
negligible in the large time limit [79]. This anomalous behaviour can be characterised using
a LDP [18, 80]. LDP states that the logarithmic probability of a time-averaged quantity is
proportional with the averaging time (with a negative proportional constant), except for the
trivial probability where the time averaged quantity takes its expectation. In renewal reward
processes with power-law waiting time distributions, this proportional constant, known as a
rate function or LDF, can take the value 0 not only for the expectation but also for a certain
range of the values [12,15,79]. This indicates that these events are more likely to occur than
in standard systems. We call this range of LDF taking the value 0 the affine part.

The affine part tells us that these rare events occur more likely than usual, but does not tell
us how likely they do. To solve this problem, finite-time analyses of the LDP are necessary.
One such attempt could be a so-called strong LDP, where the next order corrections of the
logarithmic probability from the LDP are computed [10]. However, at present, it is not clear
how this general theory can be extended to the case with the affine part. In [11], Tsirelson
studied a renewal-reward process with general waiting time distributions and derived the
next order correction to the LDP. But he used a condition in which an affine part can not
be present. In chapter 3, we have studied finite-time corrections of the MGF under the

83
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condition that the affine part appears (Theorem 2.1) but we do not succeed to translate it
to the correction term of the LDP.

The variance can tell us directly how much the averaged quantities fluctuate. If one
considers an exponential function for the waiting time distribution, the variance of the time-
averaged quantity decreases proportionally to the inverse of the averaging time because this
corresponds to the case of a process having a short memory. This indicates that the averaged
value mostly falls in the range around the expectation with an error that is proportional
with the inverse square root of the averaging time. In the presence of the affine part when
heavy-tailed distributions are used for the waiting times, we identify, in this chapter, a
condition under which this scaling of the variance changes. This is consistent with the fact
that heavy-tailed distributions introduce memory effects. Interestingly, not every power-law
decaying distribution will result in this scaling modification of the variance: We show that
for distributions whose density decay faster than 1/t3, the variance keeps its normal scaling.
In that case, we expect that the scaling of higher order cumulants are affected, as discussed
at the end of this chapter.

5.1 Background

5.1.1 Model

A renewal-reward process is a model to describe events that occur sequentially. For a given
event, the next event occurs after a random waiting time (also called a renewal time or
arrival time). The waiting times are independent-and-identically distributed random positive
variables (τk)k∈N with a probability density p. For this density, we consider the inverse
Rayleigh distribution

pβ(τ) =
β

τ 3
exp

(
− β

2τ 2

)
1l(τ > 0), (5.1.1)

and the Pareto distribution

pα(τ) =
α− 1

(1 + τ)α
1l(τ > 0) (5.1.2)

with α = 3, both of which do not have a finite second moment, i.e., E[τ 2] = ∞. The main
quantity of interest in this section is the number of events that have occurred up to time
t > 0. This is the counting process Nt

Nt = sup{k : Sk ≤ t}, (5.1.3)

where Sk = τ1 + . . .+ τk. We denote its q-th order moment by mq(t):

mq(t) := E[N q
t ]. (5.1.4)

Note that with respect to [81], we consider the case where the expectation of the waiting
time is finite and the renewal theorem implies that the counting process Nt behaves as
Nt ∼ t/E[τ ] for t→ ∞. We study the fluctuations around that behaviour.
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5.1.2 Renewal Equations for qth-moments

To analyse the asymptotics of mq(t), we rely on renewal equations: a powerful tool to analyse
renewal-reward processes. Recalling a renewal equation for a renewal function m1(t), we have

m1(t) = F (t) +

∫ t

0

ds m1(t− s)p(s), (5.1.5)

where F is the cumulative waiting time distribution function. From this equation, a simple
expression for the Laplace transform of m1(t) is derived. The Laplace transform of a function
f is

f̃(s) :=

∫ ∞

0

e−stf(t)dt, (5.1.6)

we then derive, from the equation (5.1.5),

m̃1(s) =
F̃ (s)

1− sF̃ (s)
, (5.1.7)

where we have used p̃(s) = sF̃ (s). We have derived this formulation in Section 2.1.3.
Similarly, one can also derive a renewal equation for m2(t),

m2(t) =

∫ t

0

E[N2
t−s]p(s)ds

+ 2

∫ t

0

m1(t− s)p(s) ds+ F (t),

(5.1.8)

from which the Laplace transform of m2(t) is obtained as

m̃2(s) = m̃1(s)(1 + 2sm̃1(s)). (5.1.9)

Moreover, a renewal equation for the moment-generating function can be derived. (See
Appendix 5.A). From the equation, we derive the Laplace transform of mq(t) as

m̃q(s) =

q∑
k=1

[
k∑

i=1

(
k
i

)
iq(−1)k−i

]
sk−1 [m̃1(s)]

k . (5.1.10)

5.2 Convergence Law of a Counting Process

5.2.1 Convergence of the First Moment

When a waiting-time density p has a finite mean E[τ ] = µ and a finite variance σ2, Feller
has proven (Chapter 11, section3, theorem 1) [77] that

m1(t)

t
− 1

µ
∼ σ2 − µ2

2µ2t
. (5.2.1)
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This result can be easily derived by using the following expansion:

sF̃ (s) = 1− µs+ (σ2 + µ2)
s2

2
+ o(s2). (5.2.2)

Indeed, by inserting it into (5.1.7), we get

m̃1(s) =
1

µs2
+
σ2 − µ2

2µ2s
+ o

(
1

s

)
, (5.2.3)

which leads to

m1(t) =
1

µ
t+

σ2 − µ2

2µ2
+ o(1). (5.2.4)

A rigolous justification to derive (5.2.4) from (5.2.3) is based on the Tauberian theorem [77].
See Appendix 5.B for more details. From this argument, we can see that the condition
E[τ 2] = ∞ is necessary for m1(t) to have an anomalous scaling. For this reason, we study in
this section the two waiting-time distributions behaving at infinity like 1/t3.

Let us first consider the case of the inverse Rayleigh distribution. Let

ϕ(s) =

∫ ∞

0

e−ste−
1

2t2 dt. (5.2.5)

We then have for its cumulative distribution function,

F̃β(s) = β
1
2ϕ(β

1
2 s), (5.2.6)

and

m̃1(s) =
β

1
2ϕ(β

1
2 s)

1− sβ
1
2ϕ(β

1
2 s),

(5.2.7)

from (5.1.7). We then expand ϕ(s) in s:

ϕ(s) =
1

s
−
√
π

2
− 1

2
s ln(s) +O(s), (5.2.8)

leading to

m̃1(s) =

√
2

βπ

1

s2
− 1

πs
ln(s) + o

(
ln(s)

s

)
. (5.2.9)

By using the Tauberian theorem (Appendix 5.B), we obtain

m1(t)

t
−
√

2

βπ
=

ln(t)

tπ
+ o

(
ln(t)

t

)
, (5.2.10)

for large t. This is to be compared to (5.2.1): we see that the convergence is slower in our
case.

We can repeat the same analysis in the case of the Pareto distribution. The cumulative
distribution is derived as

F3(t) := P[τ ≤ t] =

{
0 t ≤ 0
1− 1

(1+t)2
t > 0.

(5.2.11)
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whenm = 3. We insert the Laplace transform of F3 in (5.1.7) and again look at the expansion
around s of m̃ and get

m̃1(s) =
1

s2
− ln(s)

s
+ o

(
ln(s)

s

)
. (5.2.12)

We thus obtain the following behaviour for m(t) for large t:

m1(t)

t
− 1 =

ln(t)

t
+ o

(
ln(t)

t

)
. (5.2.13)

5.2.2 Convergence of the Variance

We then study the large time behaviour of the variance

c2(t) =
m2(t)−m1(t)

2

t2
. (5.2.14)

In the case that a waiting time density p has a finite mean E[τ ] = µ and a finite variance
σ2, we obtain from (5.1.9) and (5.2.3)

m̃2(s) =
2

µ2s3
+

1

s2
1

µ

(
2σ2 − µ2

µ2

)
+ o

(
1

s2

)
, (5.2.15)

which yields

m2(t) =
1

µ2
t2 +

1

µ

(
2σ2 − µ2

µ2

)
t+ o(t) (5.2.16)

with the aid of the Tauberian theorem (5.B.1). c2(t) is finally obtained as

c2(t) =
σ2

µ3t
+ o

(
1

t

)
. (5.2.17)

Let us now consider the case of the inverse Rayleigh distribution. Inserting the expression
(5.2.9) for m̃1(s) in (5.1.9), we obtain,

m̃2(s) =
4

βπ

1

s3
− 4

√
2√

βπ3/2

ln s

s2
+ o

(
ln(s)

s2

)
, (5.2.18)

and then

m2(t) =
2

βπ
t2 +

4
√
2√

βπ3/2
t ln(t) + o(t ln(t)). (5.2.19)

Therefore

c2(t) =
2
√
2√

βπ3/2

ln(t)

t
+ o

(
ln(t)

t

)
. (5.2.20)

Proceeding in the same way for the Pareto distribution, we obtain in that case

c2(t) = 2
ln t

t
+ o

(
ln(t)

t

)
. (5.2.21)
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5.2.3 Numerical Study

We perform numerical simulations of the counting process Nt to illustrate the accuracy of
(5.2.10), (5.2.13), (5.2.20) and (5.2.21). First, m1(t)− t

√
2/(βπ) (resp. m1(t)− t) computed

from the numerical simulations is plotted as an orange line in Fig.5.1(a) (resp. Fig.5.1(b))
for the inverse Rayleigh (resp. Pareto) waiting time distribution. According to (5.2.10) and
(5.2.13), these lines are equivalent to ln(t)/π + o(ln(t)) and ln(t) + o(ln(t)). Assuming that
these o(ln(t)) terms are constant over time when t is large, we next plot ln(t)/π + const.
(Fig.5.1(a)) and ln(t) + const. (Fig.5.1(b)) in the same figures.

We then plot (m2(t)−m1(t)
2)/t computed from the same numerical simulations in Fig.5.1

(c,d) for the inverse Rayleigh (Fig.5.1(c)) and the Pareto (Fig.5.1(d)) waiting time distribu-

tions. Reference lines 2
√
2√

βπ3/2 ln(t) + const. (Fig.5.1(c)) and 2 ln(t) + const. (Fig.5.1(d)) are

also plotted in the same figures. In these four figures, we observe good agreements between
the slopes of the reference lines and the results of numerical simulations in semi-log scale.
This demonstrates the validity of (5.2.10), (5.2.13), (5.2.20) and (5.2.21).

5.3 A Particle Confined between Two Hot Walls

Our aim in this section is to show that the slow convergence of the renewal function of
processes having density ∼ 1/t3 as t → ∞ also holds for physical observables in a Knudsen
gas [75]. For this, let us consider the model of a single particle bouncing back between two
thermal walls.

5.3.1 Knudsen Gas Model

We consider a particle in a one-dimensional box that has two different temperatures at both
ends. The confined tracer moves freely in the box of size 1 and is reflected at the end of the
box with a random speed v distributed according to the following Rayleigh distribution:

qβ±(v) = β±ve
−β±

v2

2 1l(v > 0), (5.3.1)

where β+ = 1/T+ (resp. β− = 1/T−) is the inverse temperature of the right (resp. left) wall.
This model has been introduced in Chapter 4 but we re-define this model for generalization
of length of the model.

Let x0 ∈ [0, 1] and v0 the initial position and velocity of the particle and σ0 = v0/|v0|.
We denote the initial condition by θ, i.e., θ = (x0, v0). The first time that the particle hits
a wall is given by Sθ,0 = (1

2
(σ0 + 1)− x0)/v0, and the subsequent hitting times are given by

Sθ,k = Sθ,0 + 1/v1 + . . .+ 1/vk, k ≥ 1, (5.3.2)

where vk is a random variable distributed according to a law qβσk
and σk = (−1)kσ0. This

may be rewritten as
Sθ,k = Sθ,0 + τ1 + . . .+ τk, k ≥ 1 (5.3.3)

with the sequence of independent waiting times (τk)k∈N distributed with the inverse Rayleigh
distribution pβk

(τ) defined as (5.1.1). The energy exchanged between the two walls during
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Fig. 5.1: (a,b) m1(t)− t/µ obtained from numerical simulations of the counting process Nt

(with 108 samples) are plotted as a function of time in log-scale as orange lines. For the
inverse Rayleigh waiting time distribution (a), β = 1 and µ = 1/

√
2/(βπ), while for the

Pareto waiting time distribution (b), m = 3 and µ = 1. ln(t)/π + const. and ln(t) + const.
are also plotted as blue dashed lines for (a) and (b). (c,d) (m2(t) − m1(t)

2)/t obtained
from the same numerical simulations are plotted as a function of time as orange lines for the
inverse Rayleigh waiting time distribution (c) and for the Pareto waiting time distribution

(d). 2
√
2√

βπ3/2 ln(t) + const. for (c) and 2 ln(t) + const. for (d) are also plotted as blue dashed

lines in the same figures. The agreements between the slopes of orange lines and those of
blue lines in these semi-log graphs demonstrate the validity of (5.2.10), (5.2.13), (5.2.20) and
(5.2.21), as detailed in the main text.
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β+ β−

Fig. 5.2: Schematic figure to explain the setup of the 1 particle model. When the particle
moves to the right (resp. left) wall, σk = 1 (resp. −1)

a time interval [0, t] is defined as

Jθ(t) :=
1

2

Nt∑
k=1

v2kσk, (5.3.4)

if t ≥ Sθ
0 and Jθ(t) = 0 otherwise, where Nt is the counting process (5.1.3), We denote by

mθ,q(t) the q-th moment of Jθ(t):

mθ,q(t) = E[Jq
θ (t)]. (5.3.5)

A generalisation to the system with an arbitrary box size L is straightforward. Indeed,
denoting by SL

θ,k the corresponding hitting times with the boundaries, it is easy to see that
SL
θ,k = LS1

θ,k. This indicates that NL
t = N1

t/L where NL
t denotes the counting process

corresponding to the hitting times SL
θ,k. For the energy current in a box of size L, we also

have that

JL
θ (t) = J1

θ

(
t

L

)
. (5.3.6)

In the following we perform all computations with the case L = 1 and then obtain the result
for an arbitrary L > 0 by using this scaling relation.

5.3.2 Convergence of the Current: First Moment

For simplicity, we consider only the following two types of initial conditions:

θ+ = (0, v0) (5.3.7)

with v0 < 0 and
θ− = (1, v0) (5.3.8)

with v0 > 0, i.e., the cases of a particle just before hitting the left wall (temperature β+)
and of a particle just before hitting the right wall (inverse temperature β−). As the particle
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immediately hits each wall when the process starts, the value of the initial velocity v0 is
unimportant. We thus denote by + the initial condition θ+ and by − the initial condition
θ−.

Dynamics with these two initial conditions are related via the renewal property:

E[J±(t) | τ1 = u] =
±1

2u2
+ E[J∓(t− u)], (5.3.9)

if 0 ≤ u ≤ t and E[J±(t) | τ1 = u] = 0 if u > t. This means that the process conditioned by
the first-waiting time (the left-hand side) is equal to the other process with some increments
(the right-hand side). By integrating (5.3.9) with respect to the inverse Rayleigh waiting time
density (5.1.1), we obtain the following coupled renewal-reward equations for the currents

m−,1(t) = −
(

1

2t2
+

1

β−

)
e−

β−
2t2

+

∫ t

0

du m+,1(t− u)pβ−(u), (5.3.10)

m+,1(t) = +

(
1

2t2
+

1

β+

)
e−

β+

2t2

+

∫ t

0

du m−,1(t− u)pβ+(u). (5.3.11)

In order to derive the speed of convergence of the current, we perform a Laplace transform
of (5.3.10) and (5.3.11):

m̃−,1(s) = −H̃−(s)−
1

β−
F̃β−(s) + s m̃+,1(s)F̃β−(s), (5.3.12)

m̃+,1(s) = H̃+(s) +
1

β+
F̃β+(s) + s m̃−,1(s)F̃β+(s), (5.3.13)

where H̃±(s) is the Laplace transform of H±(t) =
1
2t2
e−

β±
2t2 and F̃β±(s) is the Laplace trans-

form of the cumulative inverse Rayleigh distribution. By substituting (5.3.12) into (5.3.13),
we then obtain an equation for m̃+,1(s) as

m̃+,1(s) =
H̃+(s) +

1
β+
F̃β+(s)

1− s2F̃β+(s)F̃β−(s)

− sF̃β+(s)
H̃−(s) +

1
β−
F̃β−(s)

1− s2F̃β+(s)F̃β−(s)
, (5.3.14)

which leads to

(5.3.15)m̃±,1(s) = κ

(
1

β+
− 1

β−

)
1

s2
− κ2

(β+ + β−)

2

(
1

β+
− 1

β−

)
ln(s)

s
+ o

(
ln(s)

s

)
,

where κ is the conductivity given by

κ−1 =

(
πβ−
2

) 1
2

+

(
πβ+
2

) 1
2

. (5.3.16)
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Using again the Tauberian theorem for Laplace transform (Appendix 5.B), we finally get,

(5.3.17)
m±,1(t)

t
= κ

(
1

β+
− 1

β−

)
+ κ2

(β+ + β−)

2

(
1

β+
− 1

β−

)
ln t

t
+ o

(
ln(t)

t

)
.

Note that the asymptotic form of the average current m+,1(t) and m−,1(t) have opposite
signs, but this is because the definition of the current includes (−1)±1 term: these two
expressions are physical equivalent. For the average current in a box of size L, we get

(5.3.18)

mL
±,1(t)

t
=

1

L

m1
±,1(

t
L
)

t
L

=
κ

L

(
1

β+
− 1

β−

)
+ κ2

(β+ + β−)

2

(
1

β+
− 1

β−

)
ln(t)

t
+ o

(
ln(t)

t

)
.

5.3.3 Variance of the Current of Energy between Heat Baths

We next discuss the large time asymptotics of the variance of the current. The renewal
property for the second moment of the current is expressed by

(5.3.19)E[J2
±(t) | τ1 = u] =

[
1

2u2

]2
+
σ

u2
E[J∓(t− u)] + E[J2

∓(t− u)]

if 0 ≤ u ≤ t and E[J±(t) | τ1 = u] = 0 if u > t. Let us introduce for t > 0,

L±(t) =

(
1

4t4
+

1

β±t2
+

2

β2
±

)
e−

β±
2t2 ,

g±(t) =
β±
t5
e−

β±
2t2 .

Then, integrating (5.3.19) with respect to the inverse Rayleigh waiting time density (5.1.1)
and using the relation ∫ t

0

du
1

4u4
pβ±(u) =

(
1

4t4
+

1

β±t2
+

2

β2
±

)
e−

β±
2t2 (5.3.20)

for t > 0, the renewal equations for the second moment of the current are derived as

m+,2(t) = L+(t) +

∫ t

0

dum−,1(t− u)g+(u)

+

∫ t

0

dum−,2(t− u)pβ+(u), (5.3.21)

m−,2(t) = L−(t)−
∫ t

0

dum+,1(t− u)g−(u)

+

∫ t

0

dum+,2(t− u)pβ−(u), (5.3.22)
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In order to derive the large time asymptotic of the second moment of the current, we perform
Laplace transform of (5.3.21) and (5.3.22),

m̃+,2(s) = L̃+(s) + m̃−,1(s)g̃+(s) + s m̃−,2(s)F̃β+(s), (5.3.23)

m̃−,2(s) = L̃−(s)− m̃+,1(s)g̃−(s) + s m̃+,2(s)F̃β−(s). (5.3.24)

We solve these linear equations for m̃−,2(s) and m̃+,2(s)) by using m̃±,1(s) obtained in sec-
tion 5.3.2 and the following expansions of L̃±(s) and g̃±(s)

L̃±(s) =
2

β2
±s

− 3

4β
3/2
±

√
π

2
+

s

4β±
+O(s2), (5.3.25)

g̃±(s) =
2

β±
− 1√

β±

√
π

2
s+O(s2). (5.3.26)

Recalling F̃β±(s) = β
1
2
±ϕ(β

1
2
±s) with

ϕ(s) =
1

s
−
√
π

2
− 1

2
s ln(s) +O(s), (5.3.27)

the Laplace transform of the second moment of the current is derived as

(5.3.28)m̃±,2(s) = 2κ2
(

1

β+
− 1

β−

)2
1

s3
− 2κ3 ln(s)

s2
(β+ + β−)

(
1

β+
− 1

β−

)2

+ o

(
ln(s)

s2

)
.

From the Tauberian theorem (Appendix 5.B), we finally arrive at the asymptotic form of
the variance

Var

(
J±(t)

t

)
=

m±,2(t)

t2
− (m±,1(t))

2

t2

= κ3(β+ + β−)

(
1

β+
− 1

β−

)2
ln(t)

t

+o

(
ln(t)

t

)
. (5.3.29)

This result agree with our previous work [12]. As for the variance of the current in a box of
size L, we get:

Var

(
JL
±(t)

t

)
=

1

L2
Var

(
J1
±(

t
L
)

t/L

)
=

1

L
κ3(β+ + β−)

(
1

β+
− 1

β−

)2
ln(t)

t

+ o

(
ln(t)

t

)
. (5.3.30)
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5.3.4 Convergence of the Thermal Energy

A similar formulation can be applied to study the convergence of the time-averaged kinetic
energy defined as

E±(t) =
1

2

Nt∑
k=1

1

τk
.

(5.3.31)

The expected values of the energy are denoted by

m±
E(t) = E[E±(t)]. (5.3.32)

As in the section 5.3.2, we construct two equations in Laplace space

m̃+
E(s) = h̃+(s) + g̃+(s) + sm̃−

E(s)F̃β+(s), (5.3.33)

m̃−
E(s) = h̃−(s) + g̃−(s) + sm̃+

E(s)F̃β−(s), (5.3.34)

Here, h(t) and g(t) are given by

h±(t) =
e−

β±
2t2

2t
, (5.3.35)

g±(t) =
1

2

√
π

2β±
Erfc

[√
β±
2

1

t

]
. (5.3.36)

Thus, m̃+
E(s) is calculated as

m̃+
E(s) =

h̃+(s) + g̃+(s)

1− s2F̃β+(s)F̃β−(s)

+ sF̃β+(s)
h̃−(s) + g̃−(s)

1− s2F̃β+(s)F̃β−(s)
. (5.3.37)

Proceeding in tha same way as for the current, we can expand the functions involved for
small s and obtain

m̃+
E(s) =

√
π

8
κ

(√
1

β+
+

√
1

β−

)
1

s2
− 1

4

√
π

2
κ2(β++β−)

(√
1

β+
+

√
1

β−

)
ln(s)

s
+o

(
ln(s)

s

)
.

(5.3.38)

As with the derivation of (5.3.17), the large time asymptotics of m±
E(t) are derived as

mE(t) =

√
π

8
κ

(√
1

β+
+

√
1

β−

)
t+

1

4

√
π

2
κ2(β+ + β−)

(√
1

β+
+

√
1

β−

)
ln(t) + o(ln(t)).

(5.3.39)
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5.3.5 Numerical Simulations

We numerically simulate the one-particle model to check the validity of (5.3.17) and (5.3.29).
We estimatem+,1(t) andm+,2(t) from the numerical simulations, and plot m+,1(t)−κ(1/β+−
1/β−) and m±,2(t)/t

2 − (m±,1(t))
2/t2 in Fig. 5.3 (a,b). In the same figures, we also plot

(κ2/2)(β+ + β−) (1/β+ − 1/β−) (ln t)/t+ const. and κ3(β+ + β−) (1/β+ − 1/β−)
2 + const. as

blue dashed lines. We observe that the slopes of the orange lines in semi-log scale asymp-
totically converge to those of blue dashed lines. This demonstrates (5.3.17) and (5.3.29).
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β +
−

1/
β −

)t

10−1 101 103

t
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0.2
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0.6

(m
±
,2
(t
)−

(m
±
,1
(t
))

2 )
/t

Fig. 5.3: m+,1(t)−κ(1/β+−1/β−) (a) andm±,2(t)/t
2−(m±,1(t))

2/t2 (b) obtained from numer-
ical simulations (with 108 samples) are plotted as orange lines. β+ = 1, β− = 2. Blue dashed
lines are (κ2/2)(β+ + β−) (1/β+ − 1/β−) (ln t)/t+ const. and κ3(β+ + β−) (1/β+ − 1/β−)

2 +
const. The slopes of the numerical-simulation results in semi-log scale converge to those of
the dashed reference lines, showing the validity of (5.3.17) and (5.3.29).

5.4 Discussion

5.4.1 A Counting Process with Smaller Power-law Exponents

In the first part of this chapter, we studied a counting process Nt with two heavy-tail waiting
time distributions: the Pareto distribution with α = 3 and the inverse Rayleigh distribution.
These two waiting time distributions have an asymptotic form 1/τ 3 when the waiting time
τ is large, implying that the variance of the waiting time E[τ 2] diverges. Because of this
divergence, we discussed that the scaled variance c2(t)t of the counting process Nt also
diverges in the large t limit. We indeed derived that it is asymptotically proportional with
ln(t), diverging as t→ ∞.

A natural question would be, can we get a similar result with a waiting time distribution
that has an asymptotic form 1/τα with α > 3? As demonstrated in Appendix 5.A, one can
formulate a general framework, for the Pareto distribution, to derive analytical expressions
of the Laplace transform of E[Nk

t ] (k = 1, 2, 3, ...) for any α. As an example, we computed
the first, second and third moments for α = 4, from which we show the third cumulant of
Nt/t has an asymptotic form ln(t)/t2 when t is large. This indicates that the third-order
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cumulant multiplied by t2 is asymptotically proportional with ln(t), which is also diverging
in the large t limit.

For the counting process with a general fat tail waiting time distribution (that has
a power law decay as t → ∞), an existence of the affine part in the sCGF G(h) =
limt→∞(1/t) lnE[ehNt ] has been proven in chapter 3. When the sCGF is analytic, it can
be expanded using scaled cumulants c̄i (i = 1, 2, ...) as G(h) =

∑∞
i=1(c̄i/i! )h

i by definition,
where c̄i is defined as limt→∞ cit

i−1 with the i-th order cumulant ci of Nt/t. In the presence
of the affine part, sCGF is not analytic, implying that some scaled cumulants limt→∞ cit

i−1

diverge. Based on the observation above, we conjecture that the k-th order scaled cumulant
converges when k < α−2. When k = α−2, the k-th order cumulant ci increases proportion-
ally with ln(t)/ti−1, resulting in ln(t) divergence of limt→∞ cit

i−1. It is an interesting future
work to study this conjecture.

5.4.2 Many Particles Confined in the Two Hot Walls

In the second part of this chapter, we studied a particle confined in the two walls in different
temperatures, and observed that the scaled variance diverges proportionally with ln(t). Here
we discuss if we can observe the same divergence in many-body particles confined in the walls.

One-dimensional hard-core interacting particles exchange their velocities when they col-
lide. The dynamics of these particles can thus be exactly mapped to the dynamics of
non-interacting many-body particles. Let JN ,L,D

∞ (t) and JN ,L,D
0 (t) be the energy currents

of N hard-core interacting and non-interacting particles of diameter D confined in a one-
dimensional box of size L, respectively. Then, we get

E
[
JN ,L+ND,D
∞ (t)

t

]
= E

[
JN ,L+D,D
0 (t)

t

]
(5.4.1)

= N
mL

±,1(t)

t
, (5.4.2)

Var

(
JN ,L+ND,D
∞ (t)

t

)
= Var

(
JN ,L+D,D
0 (t)

t

)
(5.4.3)

= NVar

(
JL
±(t)

t

)
, (5.4.4)

where mL
±,1(t) and Var(JL

±(t)/t) are given in Eqs. (5.3.18) and (5.3.30), respectively. This
implies that the logarithmic divergence of the scaled variance should be observed in hard-core
interacting systems. In soft-core interacting systems, on the other hand, the same mapping
cannot be used. This is because of the collisions involving more than two particles, where the
exchange rule of velocities no longer holds. To demonstrate this insight, we have performed
simulations of hard-core and soft-core interacting particles. The details of the simulations are
explained in Appendix 5.C, and the results are shown in Fig. 5.4, where JMD(t) is the total
energy transferred to the colder wall from time 0 to t, and k is a parameter corresponding
to the softness of particles. Note that k = ∞ corresponds to the case of the hard-core
interacting system. We observed that the ln(t) divergence disappears as soon as particles
start to interact via soft-core interactions. It is an interesting future problem to develop
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a framework to quantitatively understand the disappearance of the divergence in soft-core
particles.

5.4.3 Related Studies

Finally, we list related studies. Studying a variance in a process that is defined with power-
law decaying distribution is not something new. In [81], several anomalous diffusion models
were studied using continuous-time random walk, and revealed anomalous scaling in their
diffusion coefficients. These anomalous scalings were argued to be universally observed in
transports in random media [78]. One of the authors also studied a single big jump principle,
which states that the sum of random variables can be approximated by their maximum when
the probability distribution of the variables has a power-law [82].

Singularities of large deviation functions of time-cumulative quantities are also known as
dynamical phase transitions, and have been studied in many physical models, such as glass
formers [14,56–61], lattice gas models [46–52], diffusive hydrodynamic equations [62–64], and
high-dimensional chaotic dynamics [53–55] and active matters [65–68]. Finite-size scalings of
the large deviation functions have been performed in several works (see an interesting recent
work [83] for example), but variance scalings have not been intensively studied in this field
yet.

5.A k-th Moment of a Counting Process with Heavy-

tailed Distributions

Here, we derive the k-th moment of a counting process Nt (with a waiting time density p)
by using a renewal equation. Recalling the derivation for the renewal equation of the MGF
(subsection 2.1.4), Mh(t) is defined by

Mh(t) ≡ E
[
ehNt

]
. (5.A.1)

Using

E
[
ehNt

]
=

∫ ∞

0

du E
[
ehNt |τ1 = u

]
p(u)

=

∫ t

0

du E
[
eh(Nt−u+1)

]
p(u)

+

∫ ∞

t

du p(u), (5.A.2)

we obtain the following renewal equation

Mh(t) = eh
∫ t

0

du Mh(t− u)p(u) +

∫ ∞

t

du p(u). (5.A.3)

The Laplace transform of this equation gives

M̃h(s) = ehM̃h(s)p̃(s) +
1− p̃(s)

s
, (5.A.4)
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Fig. 5.4: Statistical properties of JMD(t) over time for different particle softnesses averaged
over 106 samples when N = 3, D = 1, L = 5, β+ = 1/3, and β− = 1. (a) E[JMD(t)]/t versus t
for k = 0, 0.001, 0.01, and 0.1. The dashed line is E[JMD(t)]/t = Nκ(β−1

+ −β−1
− )/(L−D). (b)

Var(JMD(t))/t versus t for k = 0, 0.001, 0.01, and 0.1. The dashed line is Var(JMD(t))/t =
Nκ3(β+ + β−)(β

−1
+ − β−1

− )2 ln(t)/(L − D) + const. (c) E[JMD(t)]/t versus t for k = 1, 10,
100, 1000, and ∞. The dashed line is E[JMD(t)]/t = Nκ(β−1

+ − β−1
− )/(L − ND). (d)

Var(JMD(t))/t versus t for k = 1, 10, 100, 1000, and ∞. The dashed line is Var(JMD(t))/t =
Nκ3(β+ + β−)(β

−1
+ − β−1

− )2 ln(t)/(L−ND) + const.
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which leads to

M̃h(s) =
1

s

1− p̃(s)

1− p̃(s)eh
. (5.A.5)

Using

m̃1(s) =
p̃(s)

s(1− p̃(s))
, (5.A.6)

we can rewrite (5.A.5) as

M̃h(s) =
1

s

1

1− sm̃1(s)(eh − 1)

=
∞∑
q=0

(eh − 1)qsq−1 [m̃1(s)]
q . (5.A.7)

Because

lim
h→0

dk

dhk
(eh − 1)q =

q∑
i=0

(
q
i

)
ik(−1)q−i, (5.A.8)

lim
h→0

dk

dhk
(eh − 1)q = 0, for k < q, (5.A.9)

and

lim
h→0

dk

dhk
M̃h(s) = m̃k(s), (5.A.10)

we have

m̃k(s) =
k∑

q=1

[
q∑

i=1

(
q
i

)
ik(−1)q−i

]
sq−1 [m̃1(s)]

q . (5.A.11)

Let us now consider the Pareto distribution (5.1.2) with α = 4 as the waiting time density.
In this case, we have

m̃1(s) =
2

s2
+

1

s
+ o

(
1

s

)
, (5.A.12)

m̃2(s) =
8

s3
+

10

s2
+

16 ln(s)

s
+ o

(
ln(s)

s

)
, (5.A.13)

m̃3(s) = m̃1(s) + 6sm̃2
1(s) + 6s2m̃3

1(s)

=
48

s4
+

96

s3
+

144 ln(s)

s2
+ o

(
ln(s)

s2

)
(5.A.14)

from (5.A.11) for large s. Using the following inverse Laplace transform∫ ∞

0

e−st ln(t)dt =

(
− ln(s) + γ

s

)
, (5.A.15)
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we calculate the inverse Laplace transform of m̃k(s) as

m1(t) ∼ 2t+ 1, (5.A.16)

m2(t) ∼ 4t2 + 10t− 16 ln(t), (5.A.17)

m3(t) ∼ 8t3 + 48t2 + 206t− 144t ln(t) (5.A.18)

as t → ∞. The second cumulants c2 defined as (5.2.14) and the third cumulant c3 (defined
as the third cumulant of Nt/t

3) are then given by

c2(t) =
6

t
+ o

(
1

t

)
, (5.A.19)

c3(t) =
m3(t)− 3m1(t)m2(t) + 2m3

1(t)

t3

= −48 ln(t)

t2
+ o

(
ln(t)

t2

)
. (5.A.20)

Another Proof
Here, we introduce the method to derive the k-th moment of a counting process by using a
renewal equation. For considering the k-th moment of a counting process, we introduce an
expected value of Nk

t , which is Nt to the power of k(k ∈ N). It is given by

mk(t) = E[Nk
t ]. (5.A.21)

Then, the renewal equation of Nk
t is

mk(t) =

∫ ∞

0

E[Nk
t | τ1 = s]p(s)

=

∫ t

0

E[Nk
t | τ1 = s]p(s)

+

∫ ∞

t

E[Nk
t | τ1 = s]p(s). (5.A.22)

If s > t then E[Nk
t | τ1 = s] = 0. If 0 ≤ s ≤ t, the renewal property says that E[Nk

t | τ1 =
s] = E[(1 +Nt−s)

k]. Thus we have

mk(t) =

∫ t

0

E[(1 +Nt−s)
k]p(s)

= F (t) +
k∑

i=1

(
k

i

)
mi ∗ p(t) (5.A.23)

To describe the large time asymptotic form ofmk(t), we perform Laplace transform. Thereby,
it is calculated as

m̃k(s) =
F̃ (s) + sF̃ (s)

∑k−1
i=1

(
k
i

)
m̃i(s)

1− sF̃ (s)

= m̃1(s) + sm̃1(s)
k−1∑
i=1

(
k

i

)
m̃i(s). (5.A.24)
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This equation implies that m̃n(s)(n ∈ N) is described by m̃1(s), . . . , m̃n−1(s). For this fact,
we can expect m̃n(s) is denoted by the combinations of m̃1(s).

Remark 5.A.1. Let us suppose that m̃k(s) is denoted as

m̃k(s) =
k∑

i=1

Ais
i−1m̃i

1(s). (5.A.25)

When we consider k = 2, by using the relation (5.A.24) the m̃2(s) is given by

m̃2(s) = m̃1(s) + 2sm̃2
1(s). (5.A.26)

Thus, m̃2(s) satisfies the assumption of m̃k(s) (5.A.25). Let us suppose that m̃k, k ≤ n
satisfies (5.A.25). For induction proof, we need to check the case of k = n + 1. From
(5.A.24), m̃n+1(s) is given by

m̃n+1(s) = m̃1(s) + sm̃1(s)
n∑

i=1

(
n+ 1

i

)
m̃i(s). (5.A.27)

Moreover, by using the assumption, m̃n+1(s) is:

m̃n+1(s) = m̃1(s) + sm̃1(s)
n∑

i=1

(
n+ 1

i

) i∑
r=1

Ars
rm̃r+1

1

= m̃1(s) + sm̃1(s)
n∑

i=1

i∑
r=1

(
n+ 1

i

)
Ars

rm̃r+1
1

= m̃1(s) + sm̃1(s)
n∑

r=1

n∑
i=r

(
n+ 1

i

)
Ars

rm̃r+1
1

= m̃1(s) + sm̃1(s)
n∑

r=1

Crs
rm̃r+1

1

=
n+1∑
i=1

Drs
i−1m̃i

1. (5.A.28)

Here, we use the constants Cr, Dr. Thus, we can describe m̃k(s) as the combination of m̃1(s)

5.B Tauberian Theorem

The Tauberian theorem is stated in [77] Ch.XIII.5, theorem 4. In our context it can be
stated as follows. If the Laplace transform m̃ of the renewal function m satisfies

m̃(s) ∼ 1

sρ
L

(
1

s

)
, s→ 0

for some ρ > 0 and some slowly varying (i.e., a function L is slowly varying if for any x > 0,

limt→∞
L(xt)
L(t)

= 1) function L then

m(t) ∼ 1

Γ(ρ)
tρ−1L(t). (5.B.1)
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5.C Simulation Detail

N particles of mass m and diameter D are lined up on a line [0, L]. Let (ri, pi) be the
position and momentum of the ith particle. The total energy transferred to the right wall
from time 0 to t is defined by

JMD(t) =
∑
i

∑
ki

{
|pi(tki − 0)|2

2m
− |pi(tki + 0)|2

2m

}
(5.C.1)

with 0 ≤ tki ≤ t, where tki ± 0 is the time just before/after the ith particle collides with the
right wall for the kith time.

For the case of the soft-core interacting system, a short-range interaction potential Φ
between two particles is given by

Φ(|ri − rj|) =
k

2
(D − |ri − rj|)2 Θ(D − |ri − rj|), (5.C.2)

where Θ is the Heaviside step function, and k is a parameter corresponding to the softness of
particles. The boundary condition is the same as explained in Sec. 5.3.1. Using the second-
order symplectic integrator, we numerically solved the equations of motion for the particles,
and calculated E[JMD(t)] and Var(JMD(t)) for various values of k. In the simulation, we
set the parameter values as N = 3, L = 5, m = D = 1, β+ = 1/3, and β− = 1. The
time-discretization step-size was set to 0.01.

For the case of the hard-core interacting system (denoted by k = ∞), we performed
event-driven simulations in which two particles instantaneously exchange velocities when
they come into contact. The boundary condition and the parameter values were the same
as for the soft-core particle system.
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[79] Raphaël Lefevere and Lorenzo Zambotti. Hot scatterers and tracers for the transfer of
heat in collisional dynamics. Journal of Statistical Physics 139, 686 (2010).

[80] Hugo Touchette. The large deviation approach to statistical mechanics. Physics Reports
478, 1 (2009).

[81] Ralf Metzler, Jae-Hyung Jeon, Andrey G Cherstvy, and Eli Barkai. Anomalous diffu-
sion models and their properties: non-stationarity, non-ergodicity, and ageing at the
centenary of single particle tracking. Physical Chemistry Chemical Physics 16, 24128
(2014).

[82] Alessandro Vezzani, Eli Barkai, and Raffaella Burioni. Single-big-jump principle in
physical modeling. Physical Review E 100, 012108 (2019).
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